删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Nanostructuring increases efficiency of metal-free photocatalysts by factor 11_上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05


PCN nanolayers under sunlight can split water. Credit: Nannan Meng /Tianjin University
  One of the major challenges of the renewable energy transition is to supply energy even in the absence of sunlight. Hydrogen production by splitting water with the help of sunlight could offer a solution. Hydrogen is a good energy storage medium, and can be used in many ways. However, catalysts are needed to split water. Platinum is often used, but it is rare and expensive. Researchers therefore seek more economical alternatives. Now, a team headed by Dr. Tristan Petit from the HZB, together with colleagues led by Prof. Bin Zhang from Tianjin University, Tianjin, China, has made important progress using a well-known class of metal-free photocatalysts.

  Bin Zhang and his team specialise in the synthesis of polymeric carbon nitrides (PCN) as a catalyst for hydrogen production. The PCN molecules form a structure that can be compared to thin layers of filo pastry dough—tightly packed sheets of this material are packed together. The Chinese chemists have now succeeded in separating the individual sheets from each other by means of a relatively simple two-step heat treatment—the same way that puff pastry separates into individual crispy layers in the oven. The heat treatment produced samples consisting of individual nanolayers with large pores containing different amino groups with specific functionalities.

  Petit and his team investigated a series of these PCN samples at BESSY II. "We were able to determine which amino and oxygenated groups had been deposited in the pores," says Ph.D. student Jian Ren, co-first author of the publication. The researchers analysed how specific amino groups pull electrons to themselves, a particularly favourable property forsplitting water, and how new oxygen-based defects were formed.



heat treatment produced samples consisting of individual nanolayers with large pores containing different amino groups with specific functionalities. Credit: Nannan Meng /Tianjin University  When combined with nickel as a co-catalyst, those samples of nanostructured PCN actually exhibited record-breaking efficiency, 11 times that of normal PCN under visible light irradiation.

  "This demonstrates that PCN is an interesting potentialcatalystfor solar-to-hydrogen production, approaching the efficiency of inorganic catalysts," says Petit, who is a Volkswagen Foundation Freigeist Fellow. "Furthermore, this work also shows that soft X-ray spectroscopies are essential tools to unravel possible catalytically active sites on photocatalysts."

  Explore further:Ultrathin black phosphorus for solar-driven hydrogen economy

  More information:Nannan Meng et al, Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production,Energy & Environmental Science(2018).DOI: 10.1039/C7EE03592F  

  Journal reference:Energy & Environmental Science
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19