删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

New method efficiently generates hydrogen from water_上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05



WSU researchers have found a way to create large amounts of inexpensive nanofoam catalysts that can facilitate the generation of hydrogen on a large scale by splitting water molecules. Credit: Washington State University
  Washington State University researchers have found a way to more efficiently generate hydrogen from water—an important key to making clean energy more viable.



  Using inexpensive nickel and iron, the researchers developed a very simple, five-minute method to create large amounts of a high-quality catalyst required for the chemical reaction to split water.

  They describe their method in the February issue of the journalNano Energy.

  Energy conversion and storage is a key to theclean energyeconomy. Because solar and wind sources produce power only intermittently, there is a critical need for ways to store and save the electricity they create. One of the most promising ideas for storing renewableenergyis to use the excess electricity generated from renewables to split water into oxygen and hydrogen. Hydrogen has myriad uses in industry and could be used to power hydrogen fuel-cell cars.

  Industries have not widely used the water splitting process, however, because of the prohibitive cost of the precious metal catalysts that are required—usually platinum or ruthenium. Many of the methods to splitwateralso require too much energy, or the required catalyst materials break down too quickly.

  In their work, the researchers, led by professor Yuehe Lin in the School of Mechanical and Materials Engineering, used two abundantly available and cheap metals to create a porous nanofoam that worked better than most catalysts that currently are used, including those made from the precious metals. The catalyst they created looks like a tiny sponge. With its unique atomic structure and many exposed surfaces throughout the material, the nanofoam can catalyze the important reaction with less energy than other catalysts. The catalyst showed very little loss in activity in a 12-hour stability test.

  "We took a very simple approach that could be used easily in large-scale production," said Shaofang Fu, a WSU Ph.D. student who synthesized the catalyst and did most of the activity testing.





Yuehe Lin (left) and Shaofang Fu, a WSU Ph.D. student, in WSU Lin's materials engineering lab Credit: Washington State University

  The WSU researchers collaborated on the project with researchers at Advanced Photon Source at Argonne National Laboratory and Pacific Northwest National Laboratory.

  "The advanced materials characterization facility at the national laboratories provided the deep understanding of the composition and structures of the catalysts," said Junhua Song, another WSU Ph.D. student who worked on thecatalystcharacterization.

  The researchers are now seeking additional support to scale up their work for large-scale testing.

  "This is just lab-scale testing, but this is very promising," said Lin.
  Explore further:Improved water splitting advances renewable energy conversion

  More information:Shaofang Fu et al, Ultrafine and highly disordered Ni 2 Fe 1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte,Nano Energy(2017).DOI: 10.1016/j.nanoen.2017.12.010  



  Journal reference:Nano Energ
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19