Single-crystal graphene is a honeycomb-shaped monolayer of carbon atoms, uniform throughout the material On the other hand, polycrystalline graphene is formed by randomly oriented graphene islands, which decrease its quality. Currently, scientists are able to grow meter-sized polycrystalline graphene and smaller single-crystal graphene, ranging from 0.01 mm2 to a few cm2. The synthesis of large single-crystal graphene at a low cost is a critical goal of graphene synthesis. In this study, graphene is grown on the surface of a 5 × 50 cm2 copper foil, which was transformed into a single-crystal copper foil by heating to ~ 1,030°. The temperature slope from hot to cold moved the so-called grain boundary onwards, creating a perfect single crystal. In the heating and cooling treatment, copper atoms migrate inside the material, arranging into an ordered structure with fewer defects. "The secret to obtaining single-crystal graphene at large sizes is to have a perfect single-crystal copper as a base to start with. Large single-crystal copper foil is not commercially available, so labs must build it with their own means," explains Feng Ding, group leader at the Center for Multidimensional Carbon Materials.
Then, via another technique called chemical vapor deposition, millions of parallel graphene islands are formed on the copper foil surface. As more carbon atoms are deposited on the foil, the islands grow until they coalesce and form a near-perfect single-crystal graphene layer covering the entire available surface.
In order to optimize the technique, the team had to consider four technical challenges: (i) preparation of single-crystal copper foil in a very large area, (ii) obtaining a high degree of alignment of the graphene islands following their nucleation and growth, (iii) seamlessly stitching the graphene islands into a single crystal through further growth and (iv) the fast growth of single-crystal graphene. Although previous reports have addressed some of the above challenges, this study overcame all of them and made the synthesis of meter-sized single-crystal graphene possible. The degree of the misaligned graphene islands is less than 0.1 percent, amounting to negligible defects and grain boundaries in the products.
The current result was limited only by the size of the copper foil and, in principle, both the size of the copper foil and graphene film could be unlimited. In addition, considering the very short time for graphene synthesis (20 minutes) and the relatively low-cost experimental setup, the price of a single-crystal (or nearly single-crystal) graphene could be close to that of current polycrystalline graphene films.
"The dream of many scientists is to replace silicon," says Ding. "Now, we are exploring which is the best material to grow graphene on top, and how to use copper as a substrate for other interesting 2-D materials."
Explore further: Bubble technique used to measure shear forces between graphene sheets
More information: Xiaozhi Xu et al, Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil, Science Bulletin (2017). DOI: 10.1016/j.scib.2017.07.005
Provided by: Institute for Basic Science