删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Flatter materials have fewer imperfections, which makes for better solar cell..._上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05



Improving the efficiency of materials will help to further advancements in designing and optimizing perovskite solar cells. Credit: KAUST
  Improving the efficiency of solar cells requires materials free from impurities and structural defects. Scientists across many disciplines at KAUST have shown that 2-D organic-inorganic hybrid materials feature far fewer defects than thicker 3-D versions.

  Modern-day electronics rely on technologies that can develop almost perfect crystals of silicon; flawless to the atomic level. This is crucial because defects and impurities scatter electrons as they flow, which adversely affects the material's electronic properties.

  But hybrid perovskites, an exciting class of electronic material, cannot be constructed using the epitaxial or layer methods developed for silicon. Instead, they are produced using solution-based processes. While this makes them cheaper than silicon, it also makes purity much harder to achieve as defect population and species are sensitive to the processing conditions.

  Osman Bakr from the KAUST Solar Center together with colleagues from multiple divisions across KAUST and the University of Toronto, demonstrate that two-dimensional layers of perovskite material can achieve levels of purity much higher than is possible than in their 3-D counterpart. "Two-dimensional hybrid perovskites are a subgroup of the big hybrid perovskite family," explains Wei Peng, lead author and doctoral degree recipient from Bakr's lab. "They can be derived by inserting large organic cations in three-dimensional perovskite structures."

  Hybrid perovskites are made up of lead and halide (such as iodine) atoms and an organic component. This class of materials in solar cells has already shown ground-breaking potential for energy conversion efficiency while having low production costs and the possibility for being integrated in flexible devices. This combination of qualities makes hybrid perovskites an exciting material for optoelectronic applications.

  Peng, Bakr and coworkers created a 2-D material made of periodic layers of hybrid perovskites with an organic component of either phenethylammonium or methylammonium. Using a solution-based fabrication method, the layers were placed on a gold electrode so the team could measure the electrical conductivity.

  Their measurements indicate that the 2-D materials contained three orders of magnitude fewer defects than bulk hybrid perovskites. The team proposes that this reduction is because the large organic cations in the phenethylammonium suppress defect formation during crystallization.

  Next, the team demonstrated the potential for their materials for optoelectronic applications by constructing photoconductors with high light detectivity. These results bode well for further advancements in designing and optimizing perovskite solar cells. "A future in-depth study on how the defect formation is suppressed will help our understanding and benefit device performance-targeted materials engineering," says Peng.

  Explore further: Researchers hit new world efficiency record with perovskite solar cells

  More information: Wei Peng et al. Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b01475


  Journal reference: Nano Letters
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19