删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Super-light graphene and ceramic metamaterial possesses high strength, other ..._上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05



A new composite material combines ultra-lightweight with flame-resistance, super-elasticity and other attributes that could make it ideal for various applications. Here, the material is viewed with a scanning electron microscope, while its flame resistance is put to the test. Credit: Purdue University photo  A new featherweight, flame-resistant and super-elastic "metamaterial" has been shown to combine high strength with electrical conductivity and thermal insulation, suggesting potential applications from buildings to aerospace.
  The composite combines nanolayers of a ceramic called aluminum oxide with graphene, which is an extremely thin sheet of carbon. Although both the ceramic and graphene are brittle, the new metamaterial has a honeycomb microstructure that provides super-elasticity and structural robustness. Metamaterials are engineered with features, patterns or elements on the scale of nanometers, or billionths of a meter, providing new properties for various potential applications.

  Graphene would ordinarily degrade when exposed to high temperature, but the ceramic imparts high heat tolerance and flame-resistance, properties that might be useful as a heat shield for aircraft. The light weight, high-strength and shock-absorbing properties could make the composite a good substrate material for flexible electronic devices and "large strain sensors." Because it has high electrical conductivity and yet is an excellent thermal insulator, it might be used as a flame-retardant, thermally insulating coating, as well as sensors and devices that convert heat into electricity, said Gary Cheng, an associate professor in the School of Industrial Engineering at Purdue University.

  "This material is lighter than a feather," he said. "The density is really low. It has a very high strength-to-weight ratio."

  Findings were detailed in a research paper published on May 29 in the journal Advanced Materials. The paper was a collaboration between Purdue, Lanzhou University and the Harbin Institute of Technology, both in China, and the U.S. Air Force Research Laboratory. A research highlight about the work appeared in the journal Nature Research Materials.

  "The outstanding properties of today's ceramic-based components have been used to enable many multifunctional applications, including thermal protective skins, intelligent sensors, electromagnetic wave absorption and anticorrosion coatings," Cheng said.

  The composite material is made of interconnected cells of graphene sandwiched between ceramic layers. The graphene scaffold, referred to as an aerogel, is chemically bonded with ceramic layers using a process called atomic layer deposition.

  "We carefully control the geometry of this graphene aerogel," he said. "And then we deposit very thin layers of the ceramic. The mechanical property of this aerogel is multifunctional, which is very important. This work has the potential of making graphene a more functional material."

  The process might be scaled up for industrial manufacturing, he said.

  Future work will include research to enhance the material's properties, possibly by changing its crystalline structure, scaling up the process for manufacturing and controlling the microstructure to tune material properties.

  Explore further: Guinness World Records names graphene aerogel as world's least dense 3-D printed structure

  More information: Qiangqiang Zhang et al. Flyweight, Superelastic, Electrically Conductive, and Flame-Retardant 3D Multi-Nanolayer Graphene/Ceramic Metamaterial, Advanced Materials (2017). DOI: 10.1002/adma.201605506

  Adam Brotchie. Metamaterials: Graphene makes ceramics multifunctional, Nature Reviews Materials (2017). DOI: 10.1038/natrevmats.2017.44  

  Journal reference: Advanced Materials
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19