为了缩小实验室规模研究和商业应用之间的差距,高品质石墨烯的批量生产显得非常重要。石墨烯研究的全球进展有望开启下一代电子产品的新纪元。只有开发出可扩展且具有经济效益的高品质石墨烯生产技术才能为这个神奇的材料提供商业前景。值得庆幸的是石墨资源便宜而丰富,使得低成本生产石墨烯成为可能。预实现将单个石墨烯薄片的突出特征扩展到宏观尺度,剥离分层石墨是一个可靠的策略。
石墨烯的制备技术可谓多种多样,在固体状态或液相中,已有通过机械力将石墨烯层从母体石墨晶体上成功地分离出来的方法。尤其是湿法化学方法具有易于合成和潜在的溶液可加工性。化学合成路线中,如Hummers法可以大量生产氧化石墨烯(GO),产率高达100%(基于分散的石墨材料与石墨鳞片的重量比)。然而,即使通过使用苛刻的还原方法,残余的氧化物基团以及各种结构缺陷都会从根本上影响还原GO的电子特性。除此之外,石墨在有机溶剂(如N-甲基吡咯烷酮)中的液相超声处理制得的石墨烯薄片缺陷更少。不过这些方法需要搅拌很长时间(eg.24hours),剥离率低(<1%),且片层尺寸有限(<1μm)。虽然通过液体中的剪切剥离过程已经实现了更高的剥离产量(约3%)和生产速率(1.44 g/h),但是这种方法对于工业应用来说尚不成熟。
当在电化学电池中使用石墨作为工作电极时,电流驱使离子或带电分子迁移到石墨层间隔中并将石墨烯层推开。电化学剥离特别容易,成本低,环保,效率高。它发生在阳极(在离子液体,无机酸或无机盐的稀释水溶液中)或阴极(在含有锂盐或季铵盐的有机溶剂中),但不能同时发生。阳极剥离具有优异的生产速率(超过10g/h),产率高(约70%),可以获取侧向尺寸大(平均5mm)的薄层(单层和双/三层)石墨烯薄片。然而,获得的石墨烯不可避免地含有一定量的氧基,这是由于含水自由基(HO-C,O-C)被水分解所致。另一方面,阴极剥离减少了电位从而保证了原始的石墨烯片层,但得到的石墨烯片层较厚(> 5层),生产率相对较低(0.5-2g/h)。
德国的研究人员发现了一种在有机硫酸盐水溶液中使用交流电(AC)的新型可伸缩剥离方法,生产出高产量(约80%)高品质的石墨烯。这两个电极同时实现双重插层/剥离,实现超高生产速率(实验室试验超过20g/h)。超过75%的薄片厚度为1-3层,横向尺寸范围为1~5mm。此外,电压极性的转换有利于在剥离过程中的原位还原,并且抑制阳极氧化的结构损伤和/或残留污染,从而提供具有低缺陷密度的石墨烯片。在单个石墨烯片上测量的场效应迁移率高达430cm2/V·s。
图1a显示了在四丁基硫酸氢铵(TBA·HSO4)水溶液(0.1m,pH=1.8)通过交流电流进行石墨剥离。两个石墨箔分别作为阳极和阴极。图1c、1d代表剥离前后石墨箔的光学图像。一旦施加交流电(10 V,0.1 Hz),两个电极上的石墨箔就会迅速溶解,伴随着气泡的剧烈喷发。最终,浸入电解液内的石墨箔将完全剥落。图1e表示在15分钟内批量生产剥离石墨烯(exfoliated graphene,EG),产率高达80%。图1f表示EG直接分散在N,N-二甲基甲酰胺(DMF)中,无需表面活性剂稳定化,便可得到均匀稳定的分散体(0.10 mg/mL)。
图1 施加AC剥离石墨制备石墨烯
为了探求施加交流电流剥离石墨制备石墨烯的机理,研究人员做了在TBA·HSO4溶液中施加直流电流(DC)的对比实验。当施加DC时,在阳极和阴极都发生了石墨分层,但阴极侧的效率比阳极侧低很多。施加AC时,阴阳极两侧的效率均有大幅度提高,这表明工作偏压对离子扩散及其插层行为有很大影响。
图2 施加交流电流剥离石墨制备石墨烯的机制
上述剥离方法制备的石墨烯片之后通过Langmuir–Blodgett技术转移到Si/SiO2晶片上。图3a代表EG片的SEM图像,可以看出具有广泛尺寸分布的纳米片均匀地覆盖Si/SiO2上。从SEM图像统计计算薄片尺寸,基于100个薄片的分析,超过70%的横向尺寸在1和5mm之间(图2b),超过10%的薄片的尺寸大于5mm。图3c,3d代表EG薄片的AFM图像和相应的高度分布。剖面图显示,EG片的厚度为0.72nm,这与硅晶片上单层石墨烯的厚度一致。
图3 Si/SiO2上EG片的表征结果
该研究开发了一种简易快速剥离石墨层的方法,使用交流电分层石墨以实现高剥离效率(80%总产率,75%的石墨烯为1~3层)和超高的产能(实验室测试>20g/h)。剥离的石墨烯薄片尺寸大,缺陷程度低,空穴迁移率高。这种直接法生产的EG分散体具有优异的加工性能,并适用于制造导电膜和集成掺杂材料。在喷墨印刷、太阳能电池、催化和复合材料等方面,优质的可溶液加工的EG也具有广阔的应用前景。
来源:中国材料网http://www.matinfo.com.cn/mat2005/shangcheng/dongtai_nr.asp?id=81510
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
用交流电超快速剥离分层石墨制备石墨烯_上海硅酸盐研究所
上海硅酸盐研究所 免费考研网/2018-05-05
相关话题/生产 材料 图像 石墨 实验室
清华大学发现高储能密度无铅反铁电陶瓷材料_上海硅酸盐研究所
清华大学材料学院李敬锋教授课题组在《先进材料》(AdvancedMaterials)上在线发表了题为“高性能铌钽酸银无铅反铁电储能陶瓷”(Lead-FreeAntiferroelectricSilverNiobateTantalatewithHighEnergyStoragePerformance) ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05芝加哥伊利诺伊大学:新型化学方法将带来石墨烯技术革新_上海硅酸盐研究所
芝加哥伊利诺伊大学(UIC)的科学家已经发现了一种新的化学方法,将扩大石墨烯的应用同时保持其超快速电子学。该化学方法将通过扩大石墨烯纳米材料的应用范围来彻底改变石墨烯技术。 近日,《纳米快报》(NanoLetters)在线发表了UIC的科学家通过使用化学工艺将纳米材料附着在石墨烯上而不改变石墨烯中 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05科学家研制出特殊材料 永久电池不是梦_上海硅酸盐研究所
据报道,俄罗斯国家研究型工艺技术大学(NUSTMISIS)节能中心的工作人员研制出了航天器高效热电发生器所需材料的经济快速的制作方法,这种材料可以直接将热能转化为电能。相关文章发表在《材料化学学报A》(JournalofMaterialsChemistryA)上。 NUSTMISIS研制出的热 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05首发光子超晶体集成人造材料光源 或将推动超快速Li-Fi通信_上海硅酸盐研究所
集成两种人造光学材料概念的光源可能会推动超快速“Li-Fi”通信。 在许多应用中,Li-Fi空中光网络可能比Wi-Fi和其他射频系统更具优势。Li-Fi网络可以以极高的速度运行;他们可以工作在极宽的频率范围;他们能够避免射频系统的干扰问题,特别是在高安全性要求环境,如飞机驾驶舱、核电站;他们不容易 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05上海微系统所锗辅助绝缘体上石墨烯材料生长研究获进展_上海硅酸盐研究所
近期,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室SOI(绝缘体上硅)材料与器件课题组在绝缘体衬底上直接制备石墨烯研究方面取得新进展。制备绝缘体上石墨烯是推动石墨烯在微电子领域应用的重要基础条件,针对这一需求,SOI材料与器件课题组的研究人员使用锗薄膜做催化剂,通过化学气相沉积(C ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05中科院宁波材料所用石墨烯研制千瓦级铝空气电池_上海硅酸盐研究所
日前,中科院宁波材料所成功研制出基于石墨烯空气阴极的千瓦级铝空气电池发电系统,该电池系统能量密度高达510Wh/kg、容量20kWh、输出功率1000W。 为了满足不断发展的智能电网、移动通讯、电动汽车和应急救灾的需要,迫切需要开发能量高、成本低、体积小、寿命长的新型化学电源。传统通讯基站一般采用 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05清华等制备出海绵陶瓷新材料_上海硅酸盐研究所
陶瓷以耐高温而闻名,但致命的缺点是一旦形状发生变化就会破裂。中外科学家利用陶瓷纳米纤维制备出一种海绵状新材料,不仅超轻、耐热,其制备过程也快速经济,有望用于制作消防服和水净化等领域。相关研究成果发表在近期的《科学·进展》上。 论文通讯作者,清华大学材料学院副教授伍晖11日接受科技日报记者采访时表示 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05浙大研发出高导热超柔性石墨烯组装膜_上海硅酸盐研究所
近日,浙江大学高分子系高超团队研发出一种高导热超柔性石墨烯组装膜,导热率最高达到2053W/mK(瓦特/米开),接近理想单层石墨烯导热率的40%,创造宏观材料导热率的新纪录;同时该材料由微褶皱化大片石墨烯组装而成,具有超柔性,可被反复折叠6000次,承受弯曲十万次。 这一最新成果解决了宏观材料高导 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05中科院物理所基于材料基因组的锂电池固态电解质设计取得进展_上海硅酸盐研究所
材料基因组是近年来兴起的材料探索方法,其研究的关键是实现材料研发的“高通量”,即并发式完成“一批”而非“一个”材料样品的计算模拟、制备和表征,实现系统的筛选和优化材料,从而加快材料从发现到应用的过程。在锂电池中,从改善安全性的角度考虑,全固态锂电池被公认为未来二次电池的重要发展方向。然而使用固体电解 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05机械剥离制备石墨烯_上海硅酸盐研究所
通过自上而下的概念,将石墨粉通过剥离制备得到石墨烯。在这一过程中,理想状况下是将石墨一层一层的剥离下来,克服存在于石墨片层之间的范德华力。如何能够克服片层之间的吸引力,剥离成单层得到石墨烯是一个机械问题。一般而言,将石墨剥离成为石墨烯有两种机械方式:正向力以及剪切力,一种通过应用正向力克服石墨颗粒层 ...上海硅酸盐研究所 上海硅酸盐研究所 免费考研网 2018-05-05