删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Direct conversion of rusty stainless steel mesh into stable, low-cost electro..._上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05



  Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries. As reported in the journal Angewandte Chemie, the rust is converted directly into a compact layer with a grid structure that can store potassium ions. A coating of reduced graphite oxide increases the conductivity and stability during charge/discharge cycles.
  Increasing use of renewable energy requires effective energy storage within the grid. Lithium ion batteries, widely used in portable electronics, are promising candidates. Lithium ion batteries are based on the displacement of lithium ions. While charging, the ions move toward the graphite electrode, where they are stored between the layers of carbon. When discharging, they are released. However, lithium is expensive and reserves are limited. Sodium ion batteries have been explored as an alternative.

  "Potassium ions are just as inexpensive and readily available as sodium, and potassium ion batteries would be superior from the electric aspect," reports Xin-Bo Zhang. "However, the significantly larger radius of the potassium ions has posed a problem. Repeated storage and release of these ions destabilizes the materials currently used in electrodes."

  Zhang and a team from the Chinese Academy of sciences and Jilin University (Changchun, China) have now found an elegant solution in their use of a waste material to make novel electrodes: rejected stainless steel mesh from filters and sieves. Despite the excellent durability of these grids, harsh conditions do lead to some corrosion. The metal can be reclaimed in a furnace, but this process requires a great deal of money, time, and energy, as well as producing emissions. Says Zhang: "Conversion into electrodes could develop into a more ecologically and economically sensible form of recycling."

  The corroded mesh is dipped into a solution of potassium ferrocyanide (yellow prussiate of potash, known as a fining agent for wine). This dissolves iron, chromium, and nickel ions out of the rust layer. These combine with ferricyanide ions into the complex salt known as Prussian blue, a dark blue pigment that is deposited onto the surface of the mesh as scaffold-like nanocubes. Potassium ions can easily and rapidly be stored in and released from these structures.

  The researchers then use a dip-coating process to deposit a layer of graphene oxide (oxidized graphite layers). This layer nestles tightly onto the nanocubes. Subsequent reduction converts the graphene oxide to reduced graphene oxide (RGO), which consists of layers of graphite with isolated oxygen atoms. Zhang explains, "the RGO coating inhibits clumping and detachment of the active material. At the same time, it significantly increases the conductivity and opens ultrafast electron-transport pathways."

  In tests, coin cells made with these new electrodes demonstrate excellent capacity, discharge voltages, rate capability, and outstanding cycle stability. Because the inexpensive, binder-free electrodes are very flexible, they are highly suitable for use in flexible electronic devices.

  Explore further: Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle

  More information: Yun-hai Zhu et al. Transformation of Rusty Stainless-Steel Meshes into Stable, Low-Cost, and Binder-Free Cathodes for High-Performance Potassium-Ion Batteries, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201702711

  Journal reference: Angewandte Chemie Angewandte Chemie International Edition

相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19