删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Self-destroyed redox-sensitive stomatocyte nanomotor delivers and releases dr..._上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05



Credit: Wiley
  Autonomous targeting and release of drugs at their site of action are desired features of nanomedical systems. Now, a team of Dutch scientists has designed a nanomotor that has these functions: An antitumor drug encapsulated in self-propelled, self-assembled stomatocytes is carried across the cellular membrane and released inside the cell upon a chemical redox signal that disassembles the vesicle membrane. This deliver and unpack nanomedicinal system is introduced in the journal Angewandte Chemie.

  Self-propelling nanovesicles are attractive transport vehicles for drugs. If they are fueled by hydrogen peroxide, these vesicles can take up directed motion responding to its concentration gradient. Combining the ideas of self-propelling nanomotors, drug encapsulation, and triggered destruction of the nanocarrier, Daniela A. Wilson and her team at Radboud University, The Netherlands, have designed an artificial self-propelling vesicle, which is sealed by a block copolymer shell and opens to release the loaded drug load if it encounters higher concentrations of glutathione, a chemical signal inside cells.

  Glutathione is a so-called redox molecule, an antioxidant. In the cell, this small peptide acts as a scavenger of reactive oxygen species; besides, it serves as a pool for the amino acid cysteine. Elevated levels of glutathione are frequently found inside tumor cells. Wilson and her team came upon glutathione in their attempt to find a door-opener for their drug-loaded, self-propelling artificial vesicles: "The small glutathione can enter into the PEG shell of the nanomotor and then break down the redox-responsive disulfide bonds [...], resulting in cleavage of the outside PEG shell," they wrote. Thus, upon cleaving disulfide bonds, glutathione triggers the vesicle membrane disassembly, and the content of the vesicle, which can be a drug, is distributed in the target cell.

  The material of the vesicle membrane is a block copolymer made of poly(ethylene glycol) (PEG) and polystyrene, both of which are connected by a disulfide bond. During self-assembly, a hydrophilic anticancer drug can be encapsulated. Then, the artificial vesicle is transformed into a bowl-shaped stomatocyte, a vesicle with a special dent or groove, by adding the engine, platinum nanoparticles. This nanoparticle catalyst degrades hydrogen peroxide, which is typically produced by tumor cells, propelling the stomatocytes forward, for example, across the cell membrane. There, glutathione, as it were, presses the door handle, opens the vesicle, and stops the motion by catalyst poisoning.

  For human cell cultures, the authors demonstrated internalization of the stomatocyte nanomotors, their degradation, and drug release. They propose the nano-submarine as an attractive concept for future drug delivery applications.

  Explore further: Zinc regulates the storage and release of neurotransmitters

  More information: Yingfeng Tu et al, Redox-Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201703276 


  Journal reference: Angewandte Chemie International Edition Angewandte Chemie
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19