删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

MOFs provide a better way to remove water from gas_上海硅酸盐研究所

上海硅酸盐研究所 免费考研网/2018-05-05



Energy efficient gas drying achieved by a metal-organic framework. Credit: ? 2017 Mohamed Eddaoudi  A breakthrough in generating water-stable metal-organic frameworks allows efficient removal of water from gases.
  The conventional view that metal-organic frameworks (MOFs) cannot be stable in water has been overturned by the development of an MOF that can selectively and effectively adsorb water to dry gas streams.

  "The achievement of energy efficient dehydration by our MOF is revolutionary," said Professor Mohamed Eddaoudi, Director of the Advanced Membranes and Porous Materials (AMPM) at the KAUST Division of Physical Science and Engineering.

  Gases, such as natural gas, must be dehydrated before transportation and use to avoid problems including pipeline corrosion and blockages due to methane ice formation. Conventional drying agents require an energy-intensive regeneration cycle.

  The new fluorinated MOF developed by the KAUST team achieves the drying and regeneration cycle at relatively low temperatures and requires about half the energy input of conventional procedures. This dramatic reduction in energy use highlights the obvious potential for upscaling the innovation to bring huge efficiency savings in the gas production and transport industry.

  MOFs are hybrid organic-inorganic materials that contain metal ions or clusters held in place by organic molecules known as linkers. Varying the metal components and organic linkers allows researchers to fine-tune the structure and chemical properties of MOFs. A major aim of this fine-tuning is to create MOFs with cavities that will selectively bind to and retain specific molecules, such as the water that must be removed from a gas stream.

  "Initially, our aim was to adapt our recently introduced fluorine-containing MOFs, to include a periodic array of open metal sites and fluorine centers in the contracted pore system, to achieve various key separations," said Eddaoudi. This exploration led to the discovery of a water-stable MOF— now labeled KAUST-8— with unique water adsorption properties and outstanding recyclable dehydration capabilities. Significantly, KAUST-8 removes carbon dioxide along with water, which is a common requirement in industrial gas processing.

  "I have no doubt that this discovery will inspire scientists in academia and industry to explore MOFs to address other challenges," said Eddaoudi. The KAUST team sees additional possibilities may include the removal of water from liquids, such as inks and solvents used in the electronics industry.

  Explore further: Tweaking the structure of metal-organic frameworks could transform the capacity to use methane as a fuel

  More information: DOI: 10.1126/science.aam8310 A. Cadiau el al., "Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration," Science (2017). http://science.sciencemag.org/cgi/doi/10.1126/science.aam8310

  Journal reference: Science

相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19