删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海大学环境与化学工程学院导师教师师资介绍简介-蒋永

本站小编 Free考研考试/2021-01-23






职称:副研究员
系所:环化学院上海射线应用研究所
办公室:校本部东区环化楼610室
电话:
Email:jiangyong2008@shu.edu.cn





2005年在湘潭大学获得理学学士学位,2008年和2013年先后在上海大学获得工学硕士和工学博士学位。主要从事锂离子电池、超级电容器、锂硫电池等电化学功能材料和储能器件的基础研究和应用开发。
作为负责人承担国家自然科学基金青年项目,上海市科委能源与海洋重大项目子课题,上海市科委技术标准专项,上海市教委联盟计划、上海高校选拔培养优秀青年教师科研专项基金等多项课题研究。以第一作者或通讯作者在Journal of Materials Chemistry A, ACS Applied Materials & Interfaces, Journal of Power Sources, Electrochimica Acta等材料和电化学领域知名期刊发表SCI学术论文40余篇,ESI高被引论文2篇,累计被引1000余次,获授权国家发明专利16项。

电化学功能材料设计合成
新型动力电池材料和储能技术研究

[1] Supercapacitor performances of thermally reduced graphene oxide. Journal of Power Sources, 2012, 198, 423–427. (ESI高被引论文)
[2] Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry, 2011, 21, 18792–18798. (ESI高被引论文)
[3] 3D interconnected spherical graphene framework/SnS nanocomposite for anode material with superior lithium storage performance: Complete reversibility of Li2S. ACS Applied Materials & Interfaces, 2017, 9(2), 1407–1415.
[4] Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium- sulfur batteries with low potential barrier. Journal of Power Sources, 10.1016/j.jpowsour. 2017.03.108
[5] Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high- performance electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1: 367–373.
[6] Inhibiting the shuttle effect of Li–S battery with a graphene oxide coating separator: Performance improvement and mechanism study, Journal of Power Sources, 2017, 342(28), 929–938.
[7] Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium ion batteries, Journal of Power Sources, 2010, 195, 2950–2955.
[8] Morphology and electrical properties of carbon coated LiFePO4 cathode materials, Journal of Power Sources, 2009, 189, 462–466.
[9] Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high- performance electrochemical capacitors. Electrochimica Acta, 2015, 153, 246–253.
[10] A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitor. Electrochimica Acta, 2013, 91: 173–178.
[11] Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries. Electrochimica Acta 2012, 85, 377–383.
[12] Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochimica Acta, 2011, 56, 7340–7346.
[13] SiO2-assisted synthesis of layered MoS2/reduced graphene oxide intercalation composites as high performance anode materials for Li-ion batteries. RSC Advances, 2016, 6, 74436–74444.[14] Facile synthesis of ultrathin, undersized MoS2/ graphene aerogel for lithium-ion battery anode. RSC Advances, 2016, 6, 99833–99841.
[15] Facile fabrication and application of SnO2-ZnO nanocomposites: insight into chain-like frameworks, heterojunctions and quantum dots. RSC Advances, 2016, 6, 82096–82102.
[16] Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Applied Surface Science, 2016, 390, 209–215.
[17] Self-assembly of ultrathin MnO2/graphene with three-dimension hierarchical structure by ultrasonic-assisted co-precipitation method. Journal of Alloys and Compounds, 2016, 663, 180–186.
[18] MoS2/graphene nanocomposite with enlarged interlayer distance as high performance anode material for lithium-ion battery. Journal of Materials Research, 2016, 30(5), 3151–3160.
[19] One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium-sulfur batteries. Journal of Alloys and Compounds, 2015, 645(5), 509–516.
[20] A novel Fe2O3 rhombohedra/graphene composite as a high stability electrode for lithium ion batteries. Journal of Materials Research, 2015, 30(6), 761–769.
[21] Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. Journal of Alloys and Compounds, 2014, 597, 291–298.
[22] Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries. Journal of Applied Electrochemistry, 2014, 44(1), 53–60.
[23] Synthesis of nanoparticles, nanorods and mesoporous SnO2 as anode materials for lithium-ion batteries. Journal of Materials Research, 2014, 29(5), 609–616.
[24] Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template. Journal of Materials Research, 2013, 28(11), 1505–1511. (Cover Story).
[25] A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries. Journal of Materials Research, 2013, 28(18), 2584–2589.
[26] Chemical Lithiation Route to Size-controllable LiFePO4/C Nanocomposite. Journal of Applied Electrochemistry, 2013, 43(6), 611–617.
[27] Hydrothermal method to prepare porous NiO nanosheet. Materials Letters, 2012, 67, 24–27.

国家自然科学基金青年项目
上海市科委能源与海洋重大项目子课题
上海市科委技术标准专项
上海市教委联盟计划
上海市青年教师资助计划

2016年度上海大学最佳论文奖二等奖(ESI类)

核心通识课:环境与绿色发展








上一条:刘金亮
下一条:尚羽
相关话题/上海大学 环境