最近,复旦大学微电子学院科研团队利用二维层状MoS2制备具有光电协同调制功能的可穿戴仿人脑神经形态器件,首次实现可穿戴仿生神经突触器件的aJ级别超低功耗,远低于生物功耗水平,为超低功耗、多端调制的可穿戴式类脑计算器件的应用开辟了新的道路。相关成果以“Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation”为题发表于Advanced Science 。微电子学院副研究员陈琳、研究员孙清清为文章的通讯作者。

科研团队设计了一种基于柔性二维MoS2的异质突触,成功实现生物体内的长时程可塑性,将长时程增强(LTP)和长时程抑制(LTD)过程中的能耗降低至为18.3aJ/脉冲和28.9aJ/脉冲,为神经形态计算系统提供了一条比人脑更出色的处理信息的途径。通过增加光调制,器件同时实现光、电协同调制,动态控制突触前后端的相关性并实现复杂的多端调制,对于揭示突触之间的协作机制和构建神经网络具有重要意义。
在这项工作中,科研团队演示了基于MoS2的具有光电协同调制的可穿戴的多端人工突触器件,展现出优异的存储特性与超低的功耗。光作为一种潜在的调制信号,可以用来模仿传统的突触可塑性。通过添加额外的光刺激作为调节性突触,光电协同调制可以增强可塑性效果以实现更高阶的相关性,为复杂的生物活动模拟和神经形态计算系统设计开辟了一条新途径。