删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

电子科技大学计算机科学与工程学院导师教师师资介绍简介-叶茂

本站小编 Free考研考试/2021-09-13


姓名:叶茂 专业技术职务:教授
联系方式:**
邮箱:maoye@uestc.edu.cn
系别:计算机软件与理论系

联系方式 ** 邮箱 maoye@uestc.edu.cn
专业技术职务_详情页 教授

个人背景 1991年-1995年:四川师范大学,本科;
1996年-1998年:电子科技大学,硕士;
1998年-1999年:中电29所,助理工程师;
1999年-2002年:香港中文大学,博士;
2002年-2005年:电子科技大学,讲师;
2005年-2009年:电子科技大学,副教授;
2009年-至今:电子科技大学,教授,博导;
研究方向 我及所在课题组的主要研究方向包括:机器学习与计算机视觉、基于知识的专家系统等。
1、在机器学习与计算机视觉方面,针对目标检测迁移、智能视频编解码、面向公共安全视频监控、医学图像检测如行人检测、行人重识别、行为识别、群体异常检测等问题,结合记忆,融入知识,采用深度学习、迁移学习等理论和技术手段展开了广泛研究,相关学术成果发表于国际一流学术期刊和会议,申请多项发明专利。
2、在知识的专家系统方面,基于自然语言处理技术,人机共融智能技术,智能推荐技术所研发的智能咨询服务机器人和智能信访识别系统,在西北工业大学财务处、电子科技大学财务处、四川省图书馆等单位广泛应用。相关学术成果发表于国际一流学术期刊和会议,申请多项发明专利。
讲授课程
本科:《学术论文写作》
研究生:《学术规范与论文写作》
研究成果 研究项目:
1.项目名称,国家重点研发计划,基于人工智能的视频编码系统及应用验证项目,2019.8-2023.8,主持;
2.项目名称,国家重点研发计划,多源涉诉信访智能处置技术研究子课题,2018.12-2021.12,主持;
3.国家自然科学基金,面向服务机器人的无监督领域自适应目标检测方法研究,2018.1-2021.12,主持;
4.国家自然科学基金,基于特征学习的领域自适应目标检测方法研究,2014.1-2017.12,主持;
5.国家自然科学基金,盲信号分离若干基本问题的研究,2008.01-2010.12,主持。
论文列表:(代表性研究成果,部分论文开源代码https://github.com/maouestc
40.Lin Xiong, Mao Ye, Dan Zhang, Yan Gan, Dongde Hou, Domain adaptation of object detector using scissor-like networks, Neurocomputing 453 (2021) 263–271
39.Yan Min, Mao Ye, Liang Tian, Yulin Jian, Ce Zhu, Shangming Yang, Unsupervised FeatureSelection via Multi-step Markov Probability Relationship, Neurocomputing 453 (2021) 241–253
38.Lin Xiong, Mao Ye, Dan Zhang, Yan Gan, Xue Li and Yingying Zhu, Source-data Free Domain Adaptation of Object Detector through Domain Specific Perturbation, International Journal of Intelligent Systems. 2021
37.Lihua Zhou, Mao Ye, Dan Zhang, Ce Zhu, Luping Ji, Prototype Based Multi-Source Domain Adaptation, IEEE Transactions on Neural Networks and Learning Systems, 2021
36.Y Gan, M Ye, D Liu, S Yang, T Xiang, A novel hybrid augmented loss discriminator for text‐to‐image synthesis, International Journal of Intelligent Systems, 2020
35.X Li, D Zhang, M Ye, X Li, Q Dou, Q Lv, Bidirectional generative transductive zero-shot learning, Neural Computing and Applications, 33(10), 5313-5326, 2021
34.Y Huang, Y Gao, Y Gan, M Ye, A new financial data forecasting model using genetic algorithm and long short-term memory network, Neurocomputing,2020
33.Y Zhang, M Ye, Y Gan, W Zhang, Knowledge based domain adaptation for semantic segmentation, Knowledge-Based Systems 193, 105444, 2020
32Y Gan, K Liu, M Ye, Y Qian, Sentence guided object color change by adversarial learning, Neurocomputing 377, 113-121, 2020
31F Zhang, X Zhu, H Dai, M Ye, C Zhu, Distribution-aware coordinate representation for human pose estimation, CVPR2020
30Y Gan, K Liu, M Ye, Y Zhang, Y Qian, Generative adversarial networks with denoising penalty and sample augmentation, Neural Computing and Applications, 1-11,2019
29Y Gan, K Liu, M Ye, Y Qian, Generative adversarial networks with augmentation and penalty, Neurocomputing 360, 52-60,2019
28Feng Zhang, Xiatian Zhu, Mao Ye, Fast Human Pose Estimation, CVPR2019
27Yan Gan, Junxin Gong, Mao Ye, Yang Qian, Kedi LiuUnpaired Cross Domain Image Translation with Augmented Auxiliary Domain InformationNeurocomputing 316, 112-123, 2018
26Yuxiao Zhang, Haiqiang Chen, Yiran He, Mao Ye, Xi Cai, Dan Zhang, Road Segmentation for All-Day Outdoor Robot Navigation, Neurocomputing 314 (2018) 316–325, Source code: https://github.com/yuxiaoz/SGSN; Chinese blog: https://blog.csdn.net/jiongnima/article/details/**
25S Du, Y Liu, M Ye, Z Xu, J Li, J Liu, Single image deraining via decorrelating the rain streaks and background scene in gradient domain, Pattern Recognition 79, 303-317, 2018
24Xudong Li, Mao Ye, Yiguang Liu,Ce Zhu, Adaptive deep convolutional neural networks for scene-specific object detection. IEEE Transactions on Circuits and Systems for Video Technology, 2017
23Xudong Li, Mao Ye, Yiguang Liu,Ce Zhu, Memory-based Pedestrian Detection Through Sequence Learning, Multimedia and Expo (ICME), 2017 IEEE International Conference on, 1129-1134, Best Student Paper, Finalist of the World’s FIRST 10K Best Paper Award.
22Song Tang, Mao Ye, Pei Xu, Xudong Li, Adaptive pedestrian detection by predicting classifier, Neural Comput & Applic (2019) 31:1189–1200
21Xudong Li, Mao Ye, Yiguang Liu, Dan Liu, Feng Zhang, Song Tang, Accurate object detection using memory-based models in surveillance scenes, Pattern Recognition, Vol 67, July 2017, Pages 73–84
20Pengfei Wu,Yiguang Liu, Mao Ye ,Yunan Zheng, Geometry Guided Multi-Scale Depth Map Fusion via Graph Optimization, IEEE Transactions on Image Processing, VOL. 26, NO. 3, 1315 - 1329 , MARCH 2017, DOI: 10.1109/TIP.2017.**
19Chenfei Xu, Qihe Liu, Mao Ye, Age invariant face recognition and retrieval by coupled auto-encoder, Neuocomputing, Volume 222, 26 January 2017, Pages 62–71
18Xudong Li, Mao Ye*, Dan Liu, Feng Zhang, Song Tang, Memory-based Object Detection in Surveillance Scenes, ICME2016.
17Pengfei Wu, Yiguang Liu, Mao Ye, etc, Fast and Adaptive 3D Reconstruction with Extensively High Completeness, IEEE Transactions on Multimedia, Volume: 19, Issue: 2, Page(s): 266 – 278, FEB 2017(SCI)
16Xiang Zhang,Ce Zhu, Shuai Wang, Yipeng Liu, Mao Ye, A Bayesian Approach for Camouflaged Moving Object Detection, IEEE Transactions on Circuits and Systems for Video Technology, 2015
15Min Fu, Pei Xu, Xudong Li, Qihe Liu, Mao Ye, Ce Zhu, Fast Crowd Density Estimation with Convolutional Neural Networks, Engineering Applications of Artificial Intelligence, Volume 43, August 2015, Pages 81–88, 2015 (SCI)
14Shangming Yang, Zhang Yi, Mao Ye, Xiaofei He, Convergence Analysis of Graph Regularized Non-negative Matrix Factorization, IEEE Transactions on Knowledge and Data Engineering, 2015(SCI)
13Pei Xu, Mao Ye, etc, Dynamic Background Learning through Deep Auto-encoder Networks, ACM MM2014
12Fan Li, Mao Ye, Xudong Chen, An extension to Rough c-means clustering based on decision-theoretic Rough Sets model, International Journal of approximate Reasoning, Vol 55, Issue 1, Part 2, Pages 116-129 (SCI)2014
11Xin Zhao, Xue Li, Chaoyi Pang, Quan Z. Sheng, Sen Wang and Mao Ye,, Structured Streaming Skeleton – a New Feature for Online Human Gesture Recognition, ACM Transactions on Multimedia Computing, Communications and Applications,2014, 11 Supp. 1s: 22:1-22:18.
10Bo Wang, Mao Yes, Xue Li, Fengjuan Zhao, Jian Ding, Abnormal Crowd Behavior Detection using High Frequency and Spatio Temporal Features, Machine Vision and Applications. Vol 9, No 5, 905-912, 2012
9Ren DongxiaoYe MaosExtracting Post-Nonlinear Signal with Specific Kurtosis RangeApplied Mathematics and ComputationVol.218, No 9, 5726–5738, 2012
8Mao Ye, Xue Li, Maria E. Orlowska, Projected Outlier Detection in High Dimensional Data Set with Mixed Attributes, Expert system with Applications. 36 , pp. 7104-7113. 2009
7Mao Ye, Xu-Qian Fan, Xue Li, A class of self-stabilizing MCA Learning Algorithms, IEEE Trans. Neural Networks, Vol 17. No.6,pp. 1634-1638. 2006
6Mao Ye, Global Convergence Analysis of a Discrete Time Nonnegative ICA Algorithm, IEEE Trans. Neural NetworksVol. 17, No. 1, pp.523-526. JANUARY. 2006
5Mao Ye, Global convergence analysis of a self-stabilized MCA learning algorithm, Neurocomputing. Vol. 67C pp 321-327. 2005
4Mao Ye, Zhang Yi, Complete Convergence of Competitive Neural Networks with Different Time Scales , Neural processing letters. Vol. 21, No. 1, pp. 53 - 60. 2005
3Mao Ye, Zhang Yi, Jianchen Lv, A globally convergent PCA learning algorithm, Neural Computing and Applications. Vol. 14, No. 1, pp. 18-24. 2005
2Mao Ye, Existence and asymptotic stability of relaxation discrete shock profiles, Mathematics of Computation, Vol.73, pp.1261-1296. 2004
1Mao Ye, Numerical boundary layers of conservation laws with relaxation extension, Applied Numerical Mathematics, Vol. 51(2-3), pp. 385-405. 2004
研究成果获奖:
2019年获四川省科技进步一等奖;
2018年获中国图形图像学学会科学技术奖二等奖。
社会兼职及荣誉
Engineering Applications of Artificial Intelligence编委,2015-
中国计算机学会智能机器人、计算机视觉、多媒体技术专委会委员


相关话题/工程学院 计算机科学