删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

电子科技大学资源与环境学院导师教师师资介绍简介-全兴文

本站小编 Free考研考试/2021-09-12


姓名:全兴文 性别: 学历:博士
职称:副教授 职务: 系别:空间信息与数字技术系
科研团队:定量遥感
E-mail:xingwen.quan@uestc.edu.cn
电话:




性别 男 学历 博士
职称 副教授 职务
xbb 空间信息与数字技术系 科研团队 定量遥感
E-mail xingwen.quan@uestc.edu.cn 电话
ACADEMIC QUALIFICATIONS ACADEMIC APPOINTMENTS
TEACHING FIELDS PROFESSIONAL ACTIVITIES
PUBLICATIONS




1、 研究方向
遥感建模与反演、时空大数据挖掘、森林草原火灾风险评估与预警


2、 教育工作背景
2006.09-2010.06 成都理工大学,学士
2010.09-2013.06 电子科技大学,硕士
2013.09-2017.06 电子科技大学,博士
2015.09-2016.09 澳大利亚国立大学,联合培养
2017.07-2019.07 电子科技大学,讲师
2019.07-至今 电子科技大学,副教授


3、 研究成果
部分学术论文:
[1] Quan X, Yebra M, Ria?o D, et al. Global fuel moisture content mapping from MODIS[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101.
[2] Quan X, Xie Q, He B, et al. Integrating remotely sensed fuel variables into wildfire danger assessment for China[J]. International Journal of Wildland Fire, 2021.
[3] Quan X, Li Y, He B, et al. Application of Landsat ETM+ and OLI Data for Foliage Fuel Load Monitoring Using Radiative Transfer Model and Machine Learning Method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5100-5110.
[4] Yin C, He B, Yebra M, et al. Improving burn severity retrieval by integrating tree canopy cover into radiative transfer model simulation[J]. Remote Sensing of Environment, 2020, 236.
[5] Yin C, He B, Quan X, et al. Remote Sensing of Burn Severity Using Coupled Radiative Transfer Model: A Case Study on Chinese Qinyuan Pine Fires[J]. Remote Sensing, 2020, 12(21).
[6] 全兴文, 何彬彬, 刘向茁, 等. 多模型耦合下的植被冠层可燃物含水率遥感反演[J]. 遥感学报, 2019, 23(1): 62-77.
[7] Yebra M, Scortechini G, Badi A, et al. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications[J]. Sci Data, 2019, 6(1): 155.
[8] Wang L, Quan X, He B, et al. Assessment of the Dual Polarimetric Sentinel-1A Data for Forest Fuel Moisture Content Estimation[J]. Remote Sensing, 2019, 11(13): 1568.
[9] Luo K, Quan X, He B, et al. Effects of Live Fuel Moisture Content on Wildfire Occurrence in Fire-Prone Regions over Southwest China[J]. Forests, 2019, 10(10): 887.
[10] Liao Z M, He B B, Bai X J, et al. Improving Forest Height Retrieval by Reducing the Ambiguity of Volume-Only Coherence Using Multi-Baseline PolInSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8853-8866.
[11] Liao Z, He B, Quan X, et al. Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data[J]. Remote Sensing of Environment, 2019, 221: 489-507.
[12] Yebra M, Quan X, Ria?o D, et al. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing[J]. Remote Sensing of Environment, 2018, 212: 260-272.
[13] Liu X, He B, Quan X, et al. Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data[J]. Remote Sensing, 2018, 10(10): 1654.
[14] Liao Z, He B, Van Dijk A I J M, et al. The impacts of spatial baseline on forest canopy height model and digital terrain model retrieval using P-band PolInSAR data[J]. Remote Sensing of Environment, 2018, 210: 403-421.
[15] Quan X, He B, Yebra M, et al. A radiative transfer model-based method for the estimation of grassland aboveground biomass[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 54: 159-168.
[16] Quan X, He B, Yebra M, et al. Retrieval of forest fuel moisture content using a coupled radiative transfer model[J]. Environmental Modelling & Software, 2017, 95: 290-302.
[17] Qiu S, He B, Zhu Z, et al. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images[J]. Remote Sensing of Environment, 2017, 199: 107-119.
[18] Yin C, He B, Quan X, et al. Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data[J]. International Journal of Remote Sensing, 2016, 37(3): 615-632.
[19] Quan X, He B, Li X, et al. Retrieval of Grassland Live Fuel Moisture Content by Parameterizing Radiative Transfer Model With Interval Estimated LAI[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(2): 910-920.
[20] Quan X, He B, Li X, et al. Estimation of Grassland Live Fuel Moisture Content From Ratio of Canopy Water Content and Foliage Dry Biomass[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1903-1907.
[21] Quan X, He B, Li X. A Bayesian Network-Based Method to Alleviate the Ill-Posed Inverse Problem: A Case Study on Leaf Area Index and Canopy Water Content Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6507-6517.
[22] He B, Li X, Quan X, et al. Estimating the Aboveground Dry Biomass of Grass by Assimilation of Retrieved LAI Into a Crop Growth Model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2): 550-561.
[23] Quan X, He B, Wang Y, et al. An Extended Fourier Approach to Improve the Retrieved Leaf Area Index (LAI) in a Time Series from an Alpine Wetland[J]. Remote Sensing, 2014, 6(2): 1171-1190.
[24] He B, Quan X, Xing M. Retrieval of leaf area index in alpine wetlands using a two-layer canopy reflectance model[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 78-91.
项目信息:
[1] 川西地区森林野火风险预警遥感理论与方法,国家自然科学基金区域创新发展联合基金重点,2021.01-2024.12,参与
[2] 森林火灾预警监测关键技术及应用示范,四川省重点研发计划,2020.01-2021.12,参与
[3] 基于新一代静止气象卫星数据的植被冠层可燃物含水率反演方法,国家自然科学基金青年项目,2019.01-2021.12,主持
[4] 药肥精准施用跨境跨区域大数据平台,国家重点研发计划课题,2018.06-2020.12,参与。
[5] 西昌输电线路区域山火风险遥感评估,横向项目,2018.01-2019.12,主持。
[6] 全球生态环境遥感监测2019年度报告第一标段“全球森林覆盖状况及变化”专题报告,国家遥感中心,2018.12-2019.12,参与。
出版专著:
[1] 何彬彬,全兴文,白晓静. 遥感模型弱敏感参数反演方法[M].北京:科学出版社,2018.
[2] 何彬彬,行敏锋,全兴文.草原生态环境要素遥感定量反演及应用系统[M].北京:科学出版社, 2016.
荣誉奖励:
“李小文遥感科学青年奖”
第五届全国“互联网+”大学生创新创业大赛四川金奖、国家银奖指导教师
备注:
培养学生去向:欧美、国内名校继续深造,航天科工、阿里等企事业单位就业。


上一条:刘海隆 下一条:刘海隆
相关话题/资源与环境学院 电子科技大学