删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

电子科技大学信息与软件工程学院导师教师师资介绍简介-刘勇国

本站小编 Free考研考试/2021-09-05

导师代码: 10371
导师姓名: 刘勇国
性别: 男
特称:

职称: 教授
学位: 工学博士学位
属性: 专职
电子邮件: liuyg_cn@163.com



学术经历: 2003年获重庆大学计算机软件与理论工学博士学位,2005年上海交通大学计算机科学与技术博士后出站,同年加入电子科技大学从事教学科研工作,2010年晋升教授、博士生导师,美国佛蒙特大学访问****


个人简介: 刘勇国,男,博士后,教授,博士生导师。科研工作聚焦海量数据挖掘与决策、机器智能与推理、社交网络分析、移动智能计算、图像识别与理解、健康信息处理等领域

2003/09-2005/06, 上海交通大学,计算机系,博士后
2005/07-2010/07, 电子科技大学,计算机科学与工程学院,副教授
2010/08-2010/12, 电子科技大学,计算机科学与工程学院,教授
2011/01-2014/12, 电子科技大学,计算机科学与工程学院/信息与软件工程学院,教授/博导
2015/01-至今, 电子科技大学,信息与软件工程学院,教授/博导


学术兼职

中国中医药信息学会人工智能分会常务理事
中国老年学和老年医学学会智慧医养分会常务理事
中国老年医学学会智慧医疗技术与管理分会常务委员
四川省中医药信息学会理事
四川省中医药信息学会大数据专委会常务理事
四川省老年医学学会健康养老与医养结合专委会常务委员
四川省老年医学学会肾病专委会常务委员
四川省卫生信息学会健康医疗大数据专委会委员
四川省康复医学会社区康复分会委员
国际权威学术刊物IEEE Transactions on Cybernetics、IEEE Transactions on Neural Networks and Learning Systems、Information Sciences、Pattern Recognition等审稿专家、国家自然科学基金评审专家、国家博士后基金评审专家、教育部学位中心通讯评审专家


研究方向

数字医疗、计算健康、人工智能、大数据


招聘博士后研究人员,国家科技重大专项和国家重点研发计划支持,待遇优厚,详情面议


研究生招生

博士研究生:热烈欢迎立志前沿交叉、潜心学术研究的同学报考,提供重大科研项目支持、前沿学术指导、优厚学术待遇
硕士研究生:热烈欢迎不畏艰难险阻、勇攀科研高峰的同学报考,提供重大科研项目研发、最新科研指导、优良科研待遇


研究生就业

华为、字节跳动、阿里、快手、新浪、百度、360、小米、咪咕、中国工商银行软件开发中心、中国建设银行数据中心、中科院软件所等IT企业和科研院所



科研项目: 实验室宗旨:智策医患,健康中国

实验室文化:团结、奋斗、成功、快乐

实验室在研承担十三五国家科技重大专项、十三五国家重点研发计划、国家自然科学基金、四川省重点研发计划、四川省科技基础条件平台项目、四川省应用基础研究计划项目等多项科研课题


在研项目

[1] 国家重点研发计划:民族医药发掘整理与学术传承研究(2017YFC**),1938万,2018.01-2021.12(课题单位)
[2] 国家科技重大专项:四川省绵阳市乙肝与结核病、凉山州布拖县艾滋病综合防治示范区规模化现场队列研究(2018ZX**),3466.63万,2018.01-2020.12(参加单位)
[3] 国家重点研发计划:太极拳对2型糖尿病及脑卒中功能康复效果的临床研究(2019YFC**),880万,2019.12-2021.12(参加单位)
[4] 国家自然科学基金:基于GIS和语义发掘的藏医高原病古籍文献治疗知识可视化发现研究(**),20万,2019.01-2021.12(参加单位)
[5] 四川省重点研发计划:脑卒中后肢体痉挛的太极拳场景交互式康复训练关键技术研究(2020YFS0283),20万,2020.1-2021.12(项目单位)
[6] 四川省重点研发计划:脑卒中后肢体痉挛性瘫痪的中医康复及辅助决策关键技术研究(2019YFS0019),100万,2019.01-2021.12(课题单位)
[7] 四川省重点研发计划:智能场景化川派中医名家诊疗与经验传承系统的研发(2020YFS0372),100万,2020.01-2021.12(课题单位)
[8] 四川省重点研发计划:六字诀干预原发性高血压血管病变的“治未病”思想研究(2020YFS0302),100万,2020.01-2021.12(课题单位)
[9] 四川省重点研发计划:基于人工智能的慢性肾脏病管理关键技术研究(2019YFS0283),20万,2019.01-2020.12(参加单位)
[10] 四川省应用基础研究计划:网络药理学/药效学并行的血小板活化抑制剂筛选及SLE通路干预研究(2018JY0659),10万,2019.01-2020.12(参加单位)


结题项目

[1] 国家863计划:基于神经计算的网络数据在线挖掘技术(2008AA01Z119),97万,2008.05-2010.12(项目单位)
[2] 国家自然科学基金:基于元启发式算法的聚类分析关键问题研究(**),17万,2010.01-2012.12(项目单位)
[3] 四川省重点研发计划:面向高血压老年人群的跌倒监控关键技术的研究(2018GZ0192),20万,2018.01-2019.12(项目单位)
[4] 四川省重点研发计划:中医人工智能诊疗系统的开发研究(2018SZ0065),90万,2018.01-2019.12(课题单位)
[5] 四川省科技基础条件平台项目:中医药研发创新信息支撑服务平台(2018TJPT0039),30万,2018.01-2019.12(参加单位)
[6] 电子科技大学青年科技基金重点项目:基于神经网络的生物特征识别理论模型及其关键技术,15万,2007.01-2009.12(项目单位)



研究成果: 在IEEE TKDE、IEEE TALSP, Information Sciences、Pattern Recognition等国际权威学术刊物和CIKM等国际重要学术会议录用和发表学术论文近120篇,其中第一作者或通讯作者录用和发表SCI检索论文近50篇


近年学术论文(*为通讯作者)

部分投稿论文
[1] Jiajing Zhu, Yongguo Liu*, et al. Multi-attribute discriminative representation learning for prediction of adverse drug-drug interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence. (In Revision) (人工智能顶刊)
[2] Qiaoqin Li, Yongguo Liu*, et al. A motion recognition model for upper-limb rehabilitation exercises. Journal of Ambient Intelligence and Humanized Computing. (In Revision)
[3] Yun Zhang, Yongguo Liu*, et al. SWORIS: A syntax, word co-occurrence and inner-character similarity based fusion framework for Chinese word embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] Zhi Chen, Yongguo Liu*, et al. BDPF: A weakly supervised deep learning framework for brain disease prognosis using MRI. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Zhi Chen, Yongguo Liu*, et al. Low-rank sparse feature selection with incomplete labels for AD progression prediction. IEEE Transactions on Medical Imaging.
[6] Jiajing Zhu, Yongguo Liu*, et al. DAEM: Deep attribute embedding based multi-task learning for predicting adverse drug-drug interaction. Information Sciences.
[7] Zhi Chen, Yongguo Liu*, et al. WNNC: A novel metric learning model for multivariate time series classification based on weighted nearest neighbors constraint. Neural Processing Letters.
[8] Shigang Yang, Yongguo Liu*, et al. A word-concept heterogeneous graph convolutional network for short text classification. Neural Processing Letters.
[9] Yun Zhang, Yongguo Liu*, et al. Inner-character feature based representation learning for Chinese word embedding. Information Sciences.
[10] Yun Zhang, Yongguo Liu*, et al. Combined Skip-gram: Learning word embeddings with neighboring and interval contextual information. Neural Computing & Applications.
[11] Zhi Chen, Yongguo Liu*, et al. Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer's disease diagnosis. Information Fusion.

2021
[1] Yun Zhang, Yongguo Liu*, Jiajing Zhu, Xindong Wu. FSPRM: A feature subsequence based probability representation model for Chinese word embedding. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 29: 1702-1716, 2021. (自然语言处理顶刊)
[2] Jiajing Zhu, Yongguo Liu*, Yun Zhang, Dongxiao Li. An attribute supervised probabilistic dependent matrix tri-factorization model for the prediction of adverse drug-drug interaction. IEEE Journal of Biomedical and Health Informatics. 25(7): 2820-2832, 2021.
[3] Qiaoqin Li, Yongguo Liu*, Jiajing Zhu, Yun Zhang, Zhi Chen, Lang Liu, Shangming Yang, Juan Li, Rongjiang Jin, Jing Tao, Lidian Chen, Guanyi Zhu, Bin Zhu. Upper-limb motion recognition based on hybrid feature selection: algorithm development and validation. JMIR mHealth and uHealth. 9(9): e24402, 2021.
[4] Zhi Chen, Yongguo Liu*, Jiajing Zhu, Yun Zhang, Rongjiang Jin, Xia He, Jing Tao, Lidian Chen. Time-frequency deep metric learning for multivariate time series classification. Neurocomputing. 462: 221-237, 2021.
[5] Yun Zhang, Yongguo Liu*, Jiajing Zhu, Zhi Chen, Dongxiao Li, Yonghua Xiao, Xiaofeng Liu, Shuangqing Zhai. A core drug discovery framework from large scale literature for cold pathogenic disease treatment in traditional Chinese medicine. Journal of Healthcare Engineering. 2021, Article **, 2021.
[6] Zhi Chen, Yongguo Liu*, Jiajing Zhu, Yun Zhang, Qiaoqin Li, Rongjiang Jin, Xia He. Deep multi-metric learning for time series classification. IEEE Access. 9(1): 17829-17842, 2021.
[7] Yuxi Li, Dongling Zhong, Chao Dong, Lihong Shi, Yaling Zheng, Yongguo Liu, Qiaoqin Li, Hui Zheng,Juan Li, Tianyu Liu, Rongjiang Jin. The effectiveness and safety of Tai Chi for patients with essential hypertension: study protocol for an open-label single-center randomized controlled trial. BMC Complementary Medicine and Therapies. 21:23, 2021.
[8] 李家辉, 刘勇国*. 基于特征排序特征联合算法的疾病危险因素分析. 计算机应用研究. (已录用)
[9] 陈永波, 李巧勤, 刘勇国*. 一种基于引力模型的类属属性多标签分类算法. 计算机工程与设计. (已录用)
[10] 陈永波, 李巧勤, 刘勇国*. 一种基于动态相关性的特征选择算法. 计算机应用. (已录用)
[11] 杨世刚, 刘勇国*. 融合语料库特征与图注意力网络的短文本分类方法. 计算机应用. (已录用)

2020
[1] Jiajing Zhu, Yongguo Liu*, et al. DGDFS: Dependence guided discriminative feature selection for predicting adverse drug-drug interaction. IEEE Transactions on Knowledge and Data Engineering. (Accepted) (数据挖掘顶刊)
[2] Yun Zhang, Yongguo Liu*, et al. GLLPA: A graph layout based label propagation algorithm for community detection. Knowledge-Based Systems. 206, Article 106363, 2020.
[3] Jiajing Zhu, Yongguo Liu*, et al. A no self-edge stochastic block model and a heuristic algorithm for balanced anti-community detection in networks. Information Sciences. 518: 95-112, 2020.
[4] Jiajing Zhu, Yongguo Liu*, et al. MTMA: A multi-task multi-attribute learning model for predicting adverse drug-drug interaction. Knowledge-Based Systems. 199, Article 105978, 2020.
[5] Yun Zhang, Yongguo Liu*, et al. LILPA: A label importance based label propagation algorithm for community detection with application in traditional Chinese medicine. Neurocomputing. 413(6): 107-133, 2020.
[6] Qiaoqin Li, Yongguo Liu, Shangming Yang*. Exploiting linear manifold features with parts-based representation in various scenes. IEEE Access. 8(1): 50045-50056, 2020.
[7] Yun Zhang, Yongguo Liu*, et al. NALPA: A node ability based label propagation algorithm for community detection. IEEE Access. 8(1): 46642-46664, 2020.
[8] Yun Zhang, Yongguo Liu*, et al. WOCDA: A whale optimization based community detection algorithm. Physica A. 539: 122937, 2020.
[9] Shangming Yang, Yongguo Liu*, et al. Non-negative matrix factorization with symmetric manifold regularization. Neural Processing Letters. 51(1): 723-748, 2020.
[10] Yun Zhang, Yongguo Liu*, et al. Core drug discovery for chronic glomerulonephritis in traditional Chinese medicine from literature by semantic analysis and community detection. Computational and Mathematical Methods in Medicine. 2020, Article **, 2020.
[11] Wüntrang Dhondrup, Tawni Tidwell, Xiaobo Wang, Dungkar Tso, G?npo Dhondrup, Qingfang Luo, Choknyi Wangmo, Tsering Kyi, Yongguo Liu, Xianli Meng, Yi Zhang. Tibetan Medical informatics: An emerging field in Sowa Rigpa pharmacological & clinical research. Journal of Ethnopharmacology. 250: 112481, 2020.
[12] Ziqiang Zheng, Yongguo Liu*, et al. TCMKG: A deep learning based traditional chinese medicine knowledge graph platform. IEEE International Conference on Knowledge Graph. In: Proceedings of IEEE International Conference on Knowledge Graph (ICKG 2020), Nanjing, 2020, pp. 560-564.
[13] 刘朗, 刘勇国*等. 脑卒中运动功能自动评定研究. 中国康复理论与实践. 26(9): 1028-1032, 2020.
[14] 蒋羽, 刘勇国*等. 国医大师吕仁和治疗肾病综合征的药物网络分析. 中华中医药学刊. 38(10): 160-164, 2020.
[15] 何家欢, 刘勇国*等. 藏药药理命名实体识别. 医学信息学杂志. 41(4): 30-36, 2020.
[16] 张惠玲, 钟冬灵, 李涓, 刘勇国, 金荣疆*. 中国老年轻度认知障碍患病率的系统评价. 中国循证医学杂志. 20(1): 17-25, 2020.

2019
[1] Jiajing Zhu, Yongguo Liu*, et al. IHPreten: A novel supervised learning framework with attribute regularization for prediction of incompatible herb pair in traditional Chinese medicine. Neurocomputing. 338: 207-221, 2019.
[2] Qiaoqin Li, Yongguo Liu*, et al. ANDERATION: A new anti-community detection algorithm and its application to explore incompatibility of traditional Chinese medicine. IEEE Access. 7(1): 113975-113987, 2019.
[3] Yun Zhang, Yongguo Liu*, et al. Learning Chinese Word Embeddings from Stroke, Structure and Pinyin of Characters. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM 2019), Beijing, 2019, pp. 1011-1020.
[4] 姜珊, 刘勇国*等. 基于多源异构数据融合的跌倒检测综述. 中国老年学杂志 (已录用)
[5] 刘朗, 刘勇国*等. 智能化移动康复管理平台设计与实现. 医学信息学杂志. 40(12): 23-26, 2019.
[6] 陈智, 刘勇国*等. 基于数据挖掘技术的脑卒中康复研究进展. 中国康复医学杂志. 34(2): 229-233, 2019.

2018年及以前部分论文
[1] Lu Yin, Yongguo Liu*. Ensemble biclustering gene expression data based on the spectral clustering. Neural Computing and Applications. 30(8): 2403-2416, 2018.
[2] Jiajing Zhu, Yongguo Liu*, et al. A supervised learning framework for prediction of incompatible herb pair in traditional Chinese medicine. In: Proceedings of ACM International Conference on Information and Knowledge Management (CIKM), Torino, 2018, pp. 1799-1802.
[3] 于亚运, 刘勇国*等. 基于指纹相似度的药物-靶点相互作用预测. 中国中药杂志. 42(18): 3578-3583, 2017.
[4] Yongguo Liu*, Xindong Wu, et al. Automatic clustering using genetic algorithms. Applied Mathematics and Computation. 218(4):1267–1279, 2011.
[5] Yongguo Liu*, Zhang Yi, et al. A tabu search approach for the minimum sum-of-squares clustering problem. Information Sciences. 178(12): 2680-2704, 2008.
[6] Yongguo Liu*, Kefei Chen, et al. A genetic clustering method for intrusion detection. Pattern Recognition. 37(5): 927-942, 2004.
2021/09/03更新



专业研究方向: 专业名称 研究方向 招生类别
083500软件工程 01软件理论 博士
083500软件工程 04智能计算 博士
083500软件工程 05云计算与大数据 博士
085400电子信息 07不区分研究方向 博士
083500软件工程 01软件理论 硕士
083500软件工程 05云计算与大数据 硕士
083500软件工程 06智能计算 硕士
085400电子信息 16软件工程 硕士









相关话题/软件工程 信息