主 题:Model Selection for Gaussian Mixture Models
主讲人: Associate Prof. Heng Peng
主持人:林华珍教授
时 间:2015年11月13日上午10:30-11:30
地 点:西南财经大学柳林校区 颐德楼多媒体教室H414
主办单位:统计研究中心 统计学院 科研处
主讲人简介:
Heng Peng The Hong Kong Baptist University 副教授,目前是Member of Institute of Mathematical Statistics. Associate Editor of Statistica Sinica,发表文章36篇,其中在JASA 、JRSS(B) 、The Annals of Statistics、Biometrika等国际顶级期刊上发表论文10篇。
内容提要:
This paper is concerned with an important issue in nite mixture modeling, namely the selection of the number of mixing components. A new penalized likelihood method is proposed for nite multivariate Gaussian mixture models, and it is shown to be statistically consistent in determining the number of components. A modied EM algorithm is developed to simultaneously select the number of components and estimate the mixing probabilities and the unknown parameters of Gaussian distributions. Simulations and a real data analysis are presented to illustrate the performance of the proposed method.