东北大学 计算机科学与工程学院,辽宁 沈阳 110819
收稿日期: 2015-05-18
基金项目: 国家自然科学基金资助项目(U1433115,61151002,61401079,61501038);中国航天科技集团公司卫星应用研究院创新基金资助项目(2014_CXJJ-TX_11);中央高校基本科研业务费专项资金资助项目(N120404003).
作者简介: 刘 军(1969-),男,辽宁沈阳人,东北大学副教授。
摘要: 针对卫星导航精度问题,提出一种载波相位平滑伪距差分修正算法的改进方案.通过无码载偏离平滑滤波技术来解决电离层对伪距和载波相位观测值带来的不一致性导致的电离层误差加剧问题.利用信号传播中误差模型预测值、载波信号和码伪距确定滤波器的衰减因子,把接收到的双频载波信号相位值和伪距值线性组合,输入滤波器滤波.同时用卫星修正信息对平滑伪距值中钟差进行修正.仿真结果表明通过该算法能够减少滤波后的信号残差,提高载波相位平滑伪距差分修正值标准差的可用性,减少电离层误差对星基导航精密进近阶段定位精度的影响.
关键词:GBAS载波相位平滑伪距电离层延迟误差修正差分修正量
Phase Smoothing Pseudorange Differential Correction Improved Algorithm in GBAS
LIU Jun, WANG Jing-jing, TANG Jian, WANG Qun-yang
School of Computer Science & Engineering,Northeastern University,Shenyang 110819,China
Corresponding author: LIU Jun,E-mail: liujun@cse.neu.edu.cn
Abstract: Aiming at improving the accuracy of satellite navigation,a carrier phase smoothing pseudorange correction algorithm was put forward as an improved scheme. Divergence free smoothing filtering technology was used to solve ionospheric error problem. By using the error model predictive value in signal propagation,the carrier signal and the pseudorange,the attenuation factor was determined. The dual frequency carrier signal phase value and pseudorange value were linearly combined,which was then put into the filter. At the same time,the satellite information was used to correct clock offset on smoothing pseudorange. The simulation results show that the algorithm can reduce the residual of the signal after filtering and improve carrier phase smoothing pseudorange correction value availability of standard deviation,as well as reduce the impact of ionospheric error on the positioning accuracy in the satellite based navigation precision approach stage.
Key Words: GBAS(ground-based augmentation systems)carrier phase smoothing pseudorangeionospheric delayerror correctiondifferential correction
依附于全球卫星导航系统(global navigation satellite systems,GNSS)的增强系统,能够减少飞行成本,降低恶劣天气对定位精度的影响,提高整个空中运输系统的效率.这要求基于卫星导航的增强辅助定位服务必须满足定位精度、完好性、连续性和可用性等要求.然而,利用惯性导航系统(inertial navigation system,INS)实现对卫星导航系统的辅助导航,还存在很多问题,不能够达到精密进近所需导航性能需求(required navigation performance,RNP)[1],尤其是精密进近(precision approach)阶段.
为提高飞行阶段的各方面的性能,引入了卫星导航地基增强系统(ground-based augmentation systems,GBAS)提高机载设备的导航性能,包括导航定位精度[2].地基增强系统采用相位平滑伪距差分修正辅助定位算法[3 - 4],这种定位方法相对于伪距定位提高了定位精度,同时不存在整周模糊度的解算问题[5].传统的相位平滑伪距算法假定了电离层延迟保持不变,然而这一点不总正确.首先如果电离层发生较快、较大的变化,如出现电离层闪烁[6],就会出现两倍的电离层误差.其次,如果平滑滤波器长时间不重新设置,就会使得电离层的误差累计,出现较大的电离层的残差,导致系统的定位精度不高、载波相位平滑伪距的差分修正量误差较大[7 - 8].由于电离层误差受电离层刺穿点和天气状况等影响,动态的预测和滤波成为研究难点.
本文针对以上问题,以提高卫星导航定位精度为目标,提出了GBAS相位平滑伪距差分修正改进算法.
1 GBAS载波相位平滑伪距差分修正改进算法地基增强就是利用相位平滑伪距差分修正实现对星基导航的辅助定位,差分修正过程如图 1所示.
图 1(Fig. 1)
图 1 载波相位平滑伪距差分修正过程Fig.1 Carrier phase smoothing pseudorange |
根据卫星播发报文中的信息,解调出码伪距测量值和载波相位测量值,则伪距方程为
(1) |
(2) |
1.1 载波相位平滑伪距滤波算法利用载波相位差对每个接收机接收到的伪距作平滑处理[9].先得到t1时刻的伪距值和载波相位值:
(3) |
(4) |
(5) |
(6) |
(7) |
图 2(Fig. 2)
图 2 无码载偏离平滑(DFS)Fig.2 Divergence free smoothing |
其中:
(8) |
(9) |
(10) |
(11) |
(12) |
(13) |
通过载波相位平滑滤波对钟差和星历的修正后,得到的伪距信息如下:
(14) |
(15) |
将膨胀后的差分修正量、差分修正量的变化率以及差分修正量误差的标准差通过VDB发送给用户.用户利用收到信息修正用户的伪距信息:
(16) |
电离层残差的多少直接影响定位精度,由图 3可知,平滑滤波后电离层残差已经控制在0~0.1m之间,降低了电离层误差对定位的影响.对总的误差(见图 4)分析可知,改进的相位平滑差分修正算法在总的定位误差上比传统的算法的总的误差要低,总体上提高了定位的精度.
图 3(Fig. 3)
图 3 电离层残差Fig.3 Ionospheric residual |
图 4(Fig. 4)
图 4 平滑伪距差分修正误差Fig.4 Smoothing pseudorange differential |
2 改进后RMS值的比较RMS即一组数据的均方根值,对于地基增强系统,主要通过播发差分修正信息来对飞机实现辅助定位,对差分修正后数据的RMS值分析,可以改进航空机载用户的精度、完好性、可用性.
由图 5~图 7可知,在X,Y,Z轴上,RMS值都有相应的降低,而且随着历元的增加,RMS值较改进前更加平稳.修正误差小于2m,达到Ⅱ类盲降标准,有利于差分修正值的完好性监测,使得差分修正量的可用性更高,定位更加稳定、精确.利用差分修正值的标准差进行地面段的完好性计算,对误差滤波修正后,由于差分修正量的变化稳定在2m之内,也就是说4台接收机接收到的差分修正值比较接近,差分修正量的标准差比较小,不容易超出完好性要求的阈值水平.将原来差分修正量标准差达到完好性阈值的时间提高了5%,提高了差分修正量的标准差对于达到完好性阈值的可用性.
图 5(Fig. 5)
图 5 X轴的RMS随历元的变化Fig.5 RMS with the epoch change on the X axis |
图 6(Fig. 6)
图 6 Y轴的RMS随历元的变化Fig.6 RMS with the epoch change on the Y axis |
图 7(Fig. 7)
图 7 Z轴的RMS随历元的变化Fig.7 RMS with the epoch change on the Z axis |
3 结 论通过对以上数据的分析,在相位平滑伪距差分定位中,误差修正滤波后的电离层误差显著降低,定位精度有所提升.同时载波相位平滑伪距的差分修正值在X,Y,Z方向上的RMS有所减小,并且随着历元的增加趋于平稳.滤波状态稳定,没有误差积累.平滑伪距差分修正量误差小于2m,精度稳定在2m之内,所以垂直精度小于2.5m,达到Ⅱ类精密进近着陆引导精度标准,提高了地基增强辅助定位系统的完好水平性和差分修正量以及差分修正量标准差的可用性水平.
参考文献
[1] | Cassell R,Smith A.Development of required navigation performance (RNP) requirements for airport surface movement guidance and control[C]// Digital Avionics Systems Conference.Alexandria:IEEE,1995:57-64.(0) |
[2] | Guenter D,Dennis J.Initial operational experience with CAT I ground based augmentation system (GBAS)[C]// IEEE Conference Publications.Herdon:IEEE,2015:1-14.(0) |
[3] | Wang S,Zhu Y,Li R.The effect of navigation frequency on smoothed pseudorange variance in SBAS[C]// 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS).Qingdao:IEEE,2011:283-287.(0) |
[4] | Reddy A S,Sriharsha M R,Sarma A D,et al.Performance evaluation of single and dual frequency carrier smoothing techniques for LAAS[C]// Applied Electromagnetics Conference (AEMC).Kolkata:IEEE,2011:1-4.(0) |
[5] | Xue R, Zhang J, Zhu Y B. Cascade dual frequency smoothing for local area augmentation system[J].Chinese Journal of Aeronautics, 2009, 22(1) : 49–55.DOI:10.1016/S1000-9361(08)60068-0(0) |
[6] | Malla R,Fries R.Multi-layer modeling and simulation of the effects of ionospheric scintillation on service availability of the GPS augmentation systems [C]//Position Location and Navigation Symposium (PLANS).Indian Wells:IEEE,2010:688-693.(0) |
[7] | 刘玥.支持在航的载波相位差分定位方法研究[D].哈尔滨:哈尔滨工程大学,2013. ( Liu Yue.Research on carrier phase difference method to support on-the-fly positioning [D].Harbin:Harbin Engineering University,2013.)(0) |
[8] | Ma L,Yang X,Li Z.A method for determination of clock on board satellite combining L-band phase smoothed code and C-band TWTRS measurements[C]// IEEE International Frequency Control Symposium.Baltimore:IEEE,2012:1-4.(0) |
[9] | Konno H.Design of an aircraft landing system using dual-frequency GNSS [D].Palo Alto:Stanford University,2007.(0) |
[10] | 甘兴利.GPS局域增强系统的完善性监测技术研究[D].哈尔滨:哈尔滨工程大学,2008. ( Gan Xing-li.Research on the integrity monitoring of GPS local area augmentation system [D].Harbin:Harbin Engineering University,2008.)(0) |