最近,金属所沈阳材料科学国家研究中心金海军研究员团队在这一研究方向上取得进展。该团队提出在金属铝中构筑纳米多孔结构,一方面利用轻金属铝作为骨架相可降低纳米多孔金属密度,另一方面铝表面自发形成的极薄氧化膜可抑制表面扩散,提高材料热稳定性。相关成果以“Light, strong, and stable nanoporous aluminum with native oxide shell”为题发表于《科学·进展》(Science Advances)。
该团队将脱合金腐蚀与置换反应(GRR)相结合,成功制备出无裂纹的高质量纳米多孔铝样品。其孔棱直径约为200纳米,且孔棱表面覆盖有自发生成且可自修复的氧化铝纳米壳层(图1)。该纳米氧化膜不仅阻止材料进一步氧化和自燃,而且大幅降低表面扩散速率,从而提高纳米多孔铝的热稳定性。该材料纳米多孔结构在接近铝熔点温度下仍能保持稳定而不发生显著结构粗化。由于该材料较好的多孔结构联结性和优异的承载效率,以及表面氧化膜的强化作用,纳米多孔铝在拉伸和压缩条件下均表现出高强度。其强度远高于同等密度传统泡沫金属材料。与已报道的纳米多孔金属相比,纳米多孔铝不仅更稳定,而且密度更低,比强度更高(图2)。该研究不仅为发展新型轻质高强度新材料提供新思路,也为探索高温等极限条件下纳米多孔金属功能应用提供契机。
该工作由沈阳材料科学国家研究中心杨威博士研究生(第一作者)、罗兆平副研究员、解辉助理研究员、金海军研究员(通讯作者)与南京理工大学鲍伟康博士研究生、尤泽升副教授共同完成,该研究得到国家重点研发计划和国家自然科学基金的资助。

图1 纳米多孔铝的结构表征。(A-C)纳米多孔铝孔棱的HAADF-STEM图像和EDS元素分布图;(D)纳米多孔铝孔棱的HRTEM图像;(E,F)氧化铝层在600°C下退火 0.5h前后的准原位TEM 图像。

图2 纳米多孔铝(Al-Al2O3复合材料)的强度与密度关系图。