删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

用于二氧化碳电化学还原的纳米碳催化剂研究取得新进展

本站小编 Free考研考试/2020-04-08

闂傚倸鍊峰ù鍥х暦閻㈢ǹ绐楅柟閭﹀劒濞差亜绠i柨鏃囨閳ь剙娼¢弻銊╁籍閸屾稒鐝梺缁樼箚閸╂牠骞堥妸銉富閻犲洩寮撴竟鏇㈡⒒娴d警鏀版繛鍛礋楠炴垿宕惰閺嗭附鎱ㄥ璇蹭壕濡炪們鍨哄Λ鍐ㄧ暦閸楃倣鏃堝礃閵娿儳顔囬梻鍌氬€搁崐椋庣矆娓氣偓瀹曘儳鈧綆浜堕悢鍡樻叏濡炶浜鹃悗瑙勬处閸ㄥ爼銆侀弴銏狀潊闁靛繆鍓濋鏇㈡⒒娓氣偓濞佳嚶ㄩ埀顒€鈹戦垾铏枠闁糕斂鍨藉顕€宕奸悢鍝勫箥闂備胶顢婇~澶愬礉閺囥垺鍎嶆繛宸簼閻撶喖鏌i弮鍫缂佸妞介弻鐔碱敊閼测晝楔閻庤娲橀崕濂杆囬弻銉︾厓闂佸灝顑嗛埛鎰磼缂佹ḿ绠為柛鈹惧亾濡炪倖甯掔€氼剟鎮炲ú顏呯厱闁归偊鍨辩涵鍫曟煟椤撶噥娈旈柍瑙勫灴閸┿儵宕卞Δ鍐у寲缂備胶铏庨崢濂告偉閻撳海鏆﹂柟杈剧畱缁犲鎮楅棃娑欐喐闁硅櫕绻堝娲焻閻愯尪瀚板褎鎸抽弻鏇㈠幢濡も偓閳ь剙娼¢獮濠囨倷閸濆嫀銊╂煥閺囨浜鹃梺鍛婃煥閹虫ê顫忓ú顏勬嵍妞ゆ挾鍋樻竟鏇熺節閳封偓閸愵喖寮伴悗瑙勬礃閸ㄥ潡鐛Ο灏栧亾濞戞顏堫敁閹惧墎纾藉ù锝呮贡閳藉銇勯幋婵囶棤缂佽京鍋炵换婵嬪礃瑜忕粻姘渻閵堝棗濮傞柛濠冩礋閵嗗倹绺介崨濠勫幈闂佸疇妗ㄧ欢銈夊礉閻旈晲绻嗛柛娆忣槸婵秶鈧娲栫紞濠囥€侀弴銏℃櫜闁告洦鍓欓弨顓炩攽閻樺灚鏆╅柛瀣☉铻炴繛鍡樻尭缁犳壆绱掔€n亞姘ㄩ柡瀣Ч閺屻劑鎮㈤崫鍕戯綁鏌涚€e墎鎮奸柟鑼归濂稿炊閿濆懍澹曞┑顔结缚閸樠囩嵁濮椻偓閺屻倕煤椤忓啯鍠氬銈冨灪閻熲晠骞冨▎鎿冩晢濞达絿枪婵酣姊婚崒娆戭槮闁规祴鍓濈粭鐔肺旈崨顓炲亶闂佺粯鎸哥€垫帡宕甸弴銏$厱鐟滃酣銆冮崱娑欏亗闁靛濡囩粻楣冩煙鐎电ǹ鍓辨繛鍫熒戦妵鍕晜婵傚憡顎嶇紓浣虹帛缁诲牓宕洪埀顒併亜閹烘垵顏撮柡浣稿€块弻娑㈠焺閸愵亝鍣梺鎸庣☉缁绘ê顫忓ú顏勭闁肩⒈鍓欑敮銉╂⒑閸濄儱校闁绘绮撳顐︻敋閳ь剟鐛惔銊﹀殟闁靛鍎伴崠鏍⒒娴e摜绉洪柛瀣躬瀹曟粌鈽夊杈╃厠闂佺粯鍨剁湁缂佽妫濋弻鐔虹磼濡櫣鐟ㄥ銈呮禋閸嬪﹪寮婚悢鍓叉Ч閹肩补瀵敐澶嬪€甸柣銏ゆ涧鐢爼鏌嶇拠鏌ュ弰妤犵偛顑夐幃顏堝川椤栨氨鍝�
2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮姗€姊绘担鍛婃儓妞わ富鍨堕幃妯衡攽鐎n亝杈堝┑鐐叉閸ㄧ喖宕戦幘鑸靛枂闁告洦鍓涢敍姗€姊虹粙鎸庢崳闁轰礁顭烽悰顕€宕橀埡鍐炬祫闁诲函缍嗛崑鎺懳涢崘銊㈡斀闁绘劖娼欓悘锔剧棯閺夎法效妤犵偛顦垫俊鍫曞幢濞嗘埈鍟庨梻浣烘嚀椤曨參宕戦悙鏍稿寮介鐔蜂化婵炴挻鑹鹃敃锕傚箖閸忛棿绻嗛柛娆忣槸婵洭鏌嶇拠鏌ュ弰妤犵偛娲畷婊勬媴閾忕懓骞€婵犵數濮烽。钘壩i崨鏉戝瀭闂傚牊绋堥弸宥夋煥濠靛棙濯兼繛灏栨櫊閺屾洘绻涢悙顒佺彆闂佺粯鎸哥换姗€寮诲☉銏犵労闁告劏鏅濋ˇ銊х磽娴g柉鍏屽褎顨婃俊鐢稿礋椤栵絾鏅濋梺闈涚箚閺呮盯宕滈柆宥嗏拺闁圭ǹ娴烽埊鏇㈡煕閺冣偓閻熲晠鎮伴閿亾閿濆簼绨撮柡瀣叄閹﹢鎮欓弶鎴犱喊婵犮垼顫夊ú妯兼崲濞戞瑦缍囬柛鎾楀嫬浠归梺鍝勵儛娴滅偤鍩€椤掍緡鍟忛柛鐘崇墵閹ê鈹戠€n亞鍘撮梺纭呮彧缁犳垹澹曢崗鑲╃闁硅揪缍侀崫娲煟閿濆洦娅曠紒杈ㄦ尰閹峰懏顦版惔銈囩崶闂備胶枪椤戝懘鏁冮妶澶樻晪闁挎繂顦介弫鍡涙煃瑜滈崜鐔煎春閵忊剝鍎熼柍閿亾闁哄閰i弻鐔衡偓鐢登归灞句繆閸欏灏︽慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼闂備浇宕甸崰鍡涘磿閻㈢ǹ鏋侀柛鎰靛枛鍥撮梺鍛婄矆缁€渚€寮查悩宕囩瘈闁汇垽娼ф牎濠殿喗菧閸斿矂鎮鹃崹顐ょ懝闁逞屽墴楠炲啫螖閸涱噮妫冨┑鐐村灦閻熴儵寮抽崼銉︹拺缂侇垱娲樺▍鍛存煕婵犲啰鎽冮柣蹇擃儔濮婅櫣绱掑鍡樼暥闂佺粯顨堥崑銈呯暦濡ゅ拋鏁嗛柛灞剧矌閿涙粓鏌℃径濠勫闁告柨娴风划濠氬箻缂佹ḿ鍘撻梺鑺ッˇ钘壩熼埀顒勬⒑鐠団€虫灆缂侇喗鐟ラ悾鐤亹閹烘繃鏅濋梺闈涚墕缁绘帡鎯岄敓锟�547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鎮楅敐搴′簻妞ゅ骏鎷�4婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簼閺呮煡鏌涢妷銏℃珖妞わ富鍨跺娲偡闁箑娈堕梺绋款儑閸犳牠宕洪姀銈呯睄闁逞屽墴婵$敻宕熼鍓ф澑闂佽鍎抽顓⑺囬柆宥嗏拺缂佸顑欓崕鎰版煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫨鈧線寮崼婵嗚€垮┑掳鍊曢崯顐︾嵁閹扮増鈷掗柛灞剧懅椤︼箓鏌涘顒夊剰妞ゎ厼鐏濋~婊堝焵椤掆偓閻g兘顢涢悜鍡樻櫇闂侀潧绻堥崹鍝勨枔妤e啯鈷戦梻鍫熶緱濡狙冣攽閳ヨ櫕鍠橀柛鈹垮灲瀵噣宕奸悢鍝勫箥闂備胶顢婇~澶愬礉閺囥垺鍎嶆繛宸簼閻撶喖鏌i弮鍫熸暠閻犳劧绱曠槐鎺撴綇閵娿儳鐟查悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊呭仦缁傛帡鎮℃惔妯绘杸闂佺粯鍔樺▔娑氭閿曞倹鐓曟俊銈呭閻濐亜菐閸パ嶅姛闁逞屽墯缁嬫帟鎽繝娈垮灡閹告娊骞冨畡鎵虫瀻婵炲棙鍨甸崺灞剧箾鐎涙ḿ鐭掔紒鐘崇墵瀵鈽夐姀鐘电杸闂佺ǹ绻愰幗婊堝极閺嶎厽鈷戠紒顖涙礃濞呮梻绱掔紒妯肩疄鐎殿喛顕ч埥澶娾堪閸涱垱婢戦梻浣瑰缁诲倿骞婃惔顭掔稏闁冲搫鎳忛埛鎴︽煕濞戞﹫鍔熼柟铏礈缁辨帗娼忛妸锔绢槹濡ょ姷鍋涚换姗€骞冮埡鍐╁珰闁肩⒈鍓﹂崯瀣⒒娴e憡鍟炲〒姘殜瀹曞綊骞庨崜鍨喘閸╋繝宕ㄩ瑙勫闂佽崵鍋炵粙鍫ュ焵椤掆偓閸樻牗绔熼弴銏♀拻濞达絽鎲$拹锟犲几椤忓棛纾奸柕濞垮妼娴滃湱绱掗鍛箺鐎垫澘瀚伴獮鍥敇閻樻彃绠婚梻鍌欑閹碱偆鈧凹鍓涢幑銏ゅ箳閺冨洤小闂佸湱枪缁ㄧ儤绂嶅⿰鍫熺厸闁搞儺鐓侀鍫熷€堕柤纰卞厴閸嬫挸鈻撻崹顔界彯闂佺ǹ顑呴敃銈夘敋閿濆洦宕夐悶娑掑墲閻庡姊虹拠鈥崇€婚柛蹇庡嫎閸婃繂顫忕紒妯诲闁荤喖鍋婇崵瀣磽娴e壊鍎愰柛銊ㄥ劵濡喎顪冮妶鍡樺蔼闁搞劌缍婇幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷40缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎸鹃埀顒冾潐濞叉牕煤閵娧呬笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷顔藉缓闂侀€炲苯澧版繛鎴犳暬楠炴牗鎷呴崨濠勨偓顒勬煟鎼搭垳绉靛ù婊冪埣閹垽宕卞☉娆忎化闂佹悶鍎荤徊娲磻閹捐绀傞柛娑卞弾濡粎绱撻崒姘偓宄懊归崶銊d粓闁归棿鐒﹂崑锟犳煃閸濆嫭鍣归柦鍐枔閳ь剙鍘滈崑鎾绘煕閺囥劌浜炴い鎾存そ濮婃椽骞愭惔锝囩暤濠电偠灏欐繛鈧€规洘鍨块獮妯肩磼濡鍔掗梺鑽ゅ枑閻熴儳鈧凹鍓熷畷銏c亹閹烘挴鎷洪梺鍛婄箓鐎氼厼顔忓┑瀣厱閹兼番鍨归悘鈺備繆閸欏濮囨顏冨嵆瀹曞ジ鎮㈤崫鍕闂傚倷鑳剁涵鍫曞礈濠靛枹娲冀椤愩儱小缂備緡鍋勭€殿剟姊婚崒姘偓椋庢濮橆兗缂氱憸宥堢亱闂佸搫鍟崐濠氭儗閸℃褰掓晲閸偄娈欓梺鑽ゅ枑鐎氬牓寮崼婵嗙獩濡炪倖妫侀~澶屸偓鍨墵濮婄粯鎷呴崨濠傛殘婵炴挻纰嶉〃濠傜暦閵忋倖瀵犲璺烘閻庢椽鎮楅崗澶婁壕闂佸憡娲﹂崜娑㈠储闁秵鈷戦柛婵嗗閺嗙偤鏌熺粙鍨挃濠㈣娲熼獮鎰償濞戞鐩庨梻渚€娼ф蹇曟閺団偓鈧倿鎳犻鍌滐紲闂佸搫鍟崐鎼佸几濞戞瑣浜滈柕蹇婂墲缁€瀣煙椤旇娅婃い銏℃礋閿濈偤顢橀悜鍡橆棥濠电姷鏁搁崑鐘诲箵椤忓棛绀婇柍褜鍓氶妵鍕敃閵忊晜鈻堥梺璇″櫙缁绘繈宕洪埀顒併亜閹烘垵顏柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備浇顫夊畷妯衡枖濞戙埄鏁佺€光偓閸曨剛鍘告繛杈剧到婢瑰﹪宕曡箛鏂讳簻妞ゆ挴鍓濈涵鍫曟煙妞嬪骸鈻堥柛銊╃畺瀹曟宕ㄩ娑樼樆闂傚倸鍊风欢姘跺焵椤掑倸浠滈柤娲诲灦瀹曘垽骞栨担鍦幘闂佸憡鍔樼亸娆撳春閿濆應鏀介柨娑樺閺嗩剟鏌熼鐣屾噰鐎殿喖鐖奸獮瀣敇閻愭惌鍟屾繝鐢靛У椤旀牠宕板Δ鍛櫇闁冲搫鎳庣粈鍌涚箾閹寸偟顣叉い顐f礋閺屻劌鈹戦崱妯轰痪閻熸粎澧楃敮妤呭疾閺屻儲鐓曢柍鈺佸暟閹冲懘鏌i幘鍐测偓鎼佲€旈崘顔嘉ч柛鎰╁妿娴犲墽绱掗悙顒佺凡缂佸澧庨崚鎺楀煛閸涱喖浜滅紒鐐妞存悂寮插┑瀣拺闂傚牊绋撴晶鏇熺箾鐠囇呯暤妤犵偛妫濋弫鎰緞鐎Q勫闂備礁婀辨灙婵炲鍏橀崺銉﹀緞鐎c劋绨婚梺鎸庢椤曆冾嚕椤曗偓閺屾盯鍩為幆褌澹曞┑锛勫亼閸婃牜鏁幒妤佹櫇闁靛/鈧崑鎾愁潩閻愵剙顏�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸垹绁﹂梺鍛婂姦閸犳牜绮绘繝姘厱闁规崘灏欑粣鏃堟煃閻熸壆绠茬紒缁樼箞婵偓闁挎繂妫涢妴鎰斿Δ濠佺凹闁圭ǹ鍟块悾宄扳攽鐎n亜绐涢柣搴㈢⊕宀e潡宕㈤柆宥嗏拺闁告繂瀚弳濠囨煕鐎n偅灏电紒杈ㄥ笧閳ь剨缍嗛崑鍛暦瀹€鈧埀顒侇問閸n噣宕戞繝鍥х畺濞寸姴顑呴崹鍌涖亜閹扳晛鐏╂鐐村灴濮婄粯鎷呴崨濠冨創濠电偠顕滅粻鎴︼綖濠靛惟闁冲搫鍊告禒顓㈡⒑鐎圭姵銆冮悹浣瑰絻鍗遍柛顐犲劜閻撴瑩鏌i幇闈涘缂傚秵鍨块弻鐔煎礂閸忕厧鈧劙鏌$仦鐣屝ユい褌绶氶弻娑㈠箻閸楃偛顫囧Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷�1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻娑㈠箻閼碱剦妲梺鎼炲妽缁诲牓寮婚妸鈺傚亜闁告繂瀚呴姀銏㈢<闁逞屽墴瀹曟帡鎮欑€电ǹ骞堟繝鐢靛仦閸ㄥ爼鏁冮锕€缁╃紓浣贯缚缁犻箖鏌涢锝囩畼闁绘帗鎮傞弻锛勪沪缁嬪灝鈷夐悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偤宕堕浣叉嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犳い鏇楀亾闁哄本绋掔换婵嬪礋椤掆偓濞堝矂鏌ч懡銈呬槐闁哄本娲熷畷鐓庘攽閸パ屾П濠电姵顔栭崹浼村Χ閹间礁钃熼柨婵嗩槸缁狅綁鏌h箛鏃€銇熷ù婊勭箘缁顓兼径濠囧敹闂佸搫娲ㄩ崰鎾诲储閹间焦鈷戦柛娑橈攻缁€瀣箾娴e啿娲﹂崐鍫曟煥濠靛棙顥犵紒鈾€鍋撻梻渚€鈧偛鑻晶鎾煕閳轰礁顏€规洘岣块幑鍕Ω瑜忛崢顒€鈹戦悩娈挎毌婵℃彃鎳樺畷褰掓濞戞碍娈鹃梻鍌氱墛娓氭宕崨顔剧瘈闂傚牊绋撴晶銏㈢棯閹规劖顥夐棁澶愭煥濠靛棙顕氱憸鐗堝笒濮规煡鏌¢崘銊у闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦绾板秹顢曢懞銉﹀弿婵☆垵娉曢崼顏堟煃瑜滈崜娆撳磹閸ф绠犻柣鎰惈鍞梺鎸庢磵閸嬫捇鏌涢弬鎸庡殗婵﹨娅i幉鎾礋椤愩垹袘闂備礁鎽滈崰搴♂缚閿熺姴绠栭柨鐔哄Т閸楁娊鏌i幇顒傂i柣鈺婂灦楠炲啳顦圭€规洖銈搁、妤呭焵椤掑嫬鐭楅柡鍥╁Х绾捐棄霉閿濆嫮鐭欓柛婵婃缁辨帞鎷犻幓鎺撴鐎光偓閿濆牊纭堕柟椋庡█瀹曪綁宕掑⿰鍐╃亖缂備浇椴哥敮鎺曠亽闂佺粯鍨靛ú銊╂偩鏉堛劊浜滄い鎾墲绾爼鏌熼悷鏉款伃闁圭厧缍婂畷婊堝箛閸撲胶锛熺紓浣介哺鐢繝宕规ィ鍐ㄧ鐎瑰壊鍠曠槐鏃堟煟鎼淬埄鍟忛柛锝庡櫍瀹曟垿宕熼姘卞幒闁瑰吋鐣崝宀€绮诲☉娆嶄簻闁规崘娉涘暩闂佸疇顕ч惌鍌氼潖缂佹ɑ濯撮柣鐔煎亰閸ゅ绱撴担鍓插剱闁搞劌澧庣紓鎾寸鐎n亞鐫勯梺绋挎湰缁苯鐣烽妷鈺傜厽閹兼番鍨婚埊鏇炵暆閿濆懏鍋ラ柛鈹垮灲瀵噣宕奸悢鍝勫箺婵犳鍠楅敃鈺呭礈濮樿缍栨繝鏇炲暞缁绘繈鎮介棃娑楁勃濠电偛鍚嬮悷鈺佺暦閵壯€鍋撻敐搴℃灍闁搞倕鑻灃闁挎繂鎳庨弳娆戠磼閻橀潧鏋涢柡宀€鍠栭獮鍡涙偋閸偅顥夐梻鍌欐祰閿熴儵宕愬┑瀣摕婵炴垯鍨瑰敮闂佺懓鐡ㄧ换鍌炲汲閵徛颁簻闁哄倹顑欏Σ鎼佹煃鐟欏嫬鐏撮柟顔规櫅闇夐悗锝庡亾缁辨岸姊绘笟鈧ḿ褔鎮ч崱娑樼疇閹兼番鍔岄崙鐘崇箾閸℃ɑ灏伴柍閿嬪灴閹綊宕堕敐鍌氫壕闁惧浚鍋嗘禍鏍⒒娴e憡鍟為柡灞诲妽椤ㄣ儵骞栨担鍝ュ幒闂佽宕橀褏绮婚敐澶嬬叆闁哄啫鍊婚幗鍌涙叏婵犲倹鍋ユ慨濠冩そ閺屽懘鎮欓懠璺侯伃婵犫拃灞芥珝鐎殿噮鍋婂畷濂稿Ψ閿旀儳骞堥梺璇茬箳閸嬫稓鏁崫鍕垫僵閻犻缚娅i敍娑㈡⒑閻熸澘鈷旂紒顕呭灦瀵煡骞栨担鍦弳闂佺粯娲栭崐鍦偓姘炬嫹
二氧化碳导致的温室效应,气候变化等问题已经成为世界性的挑战。二氧化碳的捕集与转化是当前学术界的热点。二氧化碳的电化学还原是利用电能在温和可控的条件下还原二氧化碳为有用的燃料和化学品,是一种具有广阔应用前景的技术。由于二氧化碳电化学还原的机理、动力学以及产物分布与所使用的阴极催化剂密切相关,因此催化剂材料的研究与开发是二氧化碳电化学还原研究的重点。杂原子掺杂型碳基催化剂具有可调控的高表面积结构、析氢过电位高、稳定性好、成本低等特点,是电化学还原二氧化碳的较为理想的催化剂材料。
  近日,金属所催化材料研究部李波副研究员带领的研究小组就杂原子掺杂碳基催化剂进行研究,提出一种磷掺杂的洋葱碳型催化剂(P-OLC)。利用不同的制备方法和多种表征手段(XPS,DRITFS,TGA,TPD),制备出具有不同磷元素化学状态的P-OLC,并用于二氧化碳电化学还原反应中的阴极材料。研究发现具有磷-碳化学态的P-OLC明显优于磷-氧-碳化学态的P-OLC,磷-碳态的P-OLC能够在-0.9 V下以4.9mA cm-2的电流密度、81%的电流效率还原二氧化碳为一氧化碳,并且具有接近30小时的稳定性(图1)。第一性原理理论计算表明,磷-碳键的存在能够有效改善关键反应中间体COOH*在催化剂上的吸附,而且磷-碳键上的部分态密度相较于磷-氧-碳表现出明显的费米能级附近的态密度,说明磷-碳键能够提高反应位原子的活性。
  此项工作是将磷元素掺杂首次应用于二氧化碳电化学还原反应,并成功揭示了磷元素的化学状态在反应中的关键作用,为未来的杂原子掺杂的碳基催化剂的开发提供了新思路。
  文章于近日发表在Journal of Materials Chemistry A杂志上,选为内封底文章(inside Back Cover), 并被编辑部评为2018“HOT paper”。这是该研究小组工作第二次入选Journal of Materials Chemistry A “HOT paper”。2017年“碳材料载体杂原子调控单原子金催化剂一氧化碳氧化反应的第一性原理计算”文章被评为2017“HOT paper” (J. Mater. Chem. A, 2017,5, 16653-16662)。
  从2016年以来,李波研究小组详细研究了掺硼介孔碳、掺氮石墨烯以及石墨烯/碳纳米管复合结构等碳基催化剂在二氧化碳电化学还原中的催化性能和反应机理。基于前期工作,他们应邀以“CO2 electoreduction reaction on heteroatom-doped carbon cathode materials”为题在J. Mater. Chem. A发表“Highlight”文章。文章归纳总结了碳材料电极材料研究中涉及的杂原子(氮、硼、硫等)、不同碳材料(碳纳米管,石墨烯,生物炭,纳米金刚石等)、反应产物分布(一氧化碳,甲酸,甲醇,甲烷,多碳产物等)以及反应机理(关键反应过渡态、活性位)与杂原子掺杂的关系(图2), 提出掺杂策略对于碳基催化剂的至关重要作用,并对于未来碳基催化剂的研究与开发进行了展望。
  以上工作得到国家自然科学基金、中石化、金属所优秀****、天河超算等基金的支持。
  文章一
  文章二

图1 磷掺杂策略制备用于二氧化碳电化学还原催化剂图解及催化剂的表征与性能

图2 用于二氧化碳电化学还原的杂原子掺杂碳基催化剂的模型示意、制备方法、与机理图解

相关话题/纳米 电化学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 《自然·纳米科技》报道金属所二维本征铁磁半导体研究最新进展
    电调控磁性是自旋电子学中一个重要的研究方向。磁性材料中如果能赋予门电压的调控特性,将会为自旋阀等自旋器件增加一个具有巨大应用前景的调控自由度,从而实现自旋场效应管。近年来,随着二维范德华材料家族的发展,各种新物理现象不断涌现。二维范德华材料主要优势之一是由于Z轴维度降低,原有块体中的静电屏蔽减弱,从 ...
    本站小编 Free考研考试 2020-04-08
  • 米级单壁碳纳米管薄膜的连续制备及全碳电路研制获得突破
    单壁碳纳米管具有优异的力学、电学和光学性质,在柔性和透明电子器件领域可作为透明电极材料或半导体沟道材料,因此被认为是最具竞争力的候选材料之一。开发出可高效、宏量制备高质量碳纳米管薄膜的方法已成为该材料走向实际应用的关键难题。首先,迄今制备的单壁碳纳米管薄膜的尺寸通常为厘米量级,批次制备方式不能满足规 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米金属稳定性研究取得重要进展
    金属晶粒细化至纳米尺寸可以大幅度提高其强度和硬度,但是由于引入了大量的晶界,纳米金属材料的结构稳定性变低,晶粒长大倾向明显。在一些纳米金属,如纯铜中,纳米晶粒甚至在室温条件下即发生长大。这种固有的不稳定性一方面给纳米金属材料的制备带来困难,另一方面也限制了纳米金属的实际应用。  最近,沈阳材料科学国 ...
    本站小编 Free考研考试 2020-04-08
  • 高性能碳纳米管透明导电薄膜研究取得重要进展
    透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米碳材料催化剂表面官能团化学性质和催化活性理论计算模拟进展取得重要进展
    纳米碳材料催化剂例如碳纳米管、纳米金刚石、石墨烯等作为一类重要非金属催化剂在许多催化反应中展现出媲美或超过传统金属催化剂的催化性能。氧、氮、硼、硫等是纳米碳材料上常见的表官能团,同时它们也是调控催化性能的重要因素。理解和总结表面官能团的化学性质和催化活性是进一步优化和发展纳米碳材料催化剂的关键科学问 ...
    本站小编 Free考研考试 2020-04-08
  • 通过纳米纤维素与石墨烯协同作用,金属所科研人员制备出超双亲聚氨酯海绵
    超双亲材料表面同时具有超亲水和超亲油的性能,是一种特殊的材料表面性质。近期,金属所研究人员利用纳米纤维素和石墨烯的协同作用,通过浸涂法获得超双亲聚氨酯海绵。该超双亲海绵对水和油类的接触角为0o,能够在短时间内迅速吸附水和油。该项成果为制备具有特殊浸润性能的多孔弹性材料及其复合材料提供了新思路,在催化 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米孪晶金属与历史无关的稳定循环响应研究取得重要突破
    疲劳通常指反复施加循环载荷(远小于材料的屈服应力极限)而引起的一种材料弱化过程。实际服役过程中约90%金属构件的失效均由疲劳断裂引起,其原因是材料在循环加载过程中微观结构不断变化、遭受严重且不可逆转的累积损伤,从而导致材料循环硬化或软化直至最终失效。金属材料的非稳定循环响应及疲劳寿命强烈依赖于其疲劳 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米金属中发现晶界稳定性控制的硬化和软化行为
    金属材料的强度或硬度往往随晶粒尺寸减小而增加,遵循基于位错塞积变形机制的Hall-Petch关系,即强度的增加与晶粒尺寸的平方根成反比。而当晶粒尺寸低于某临界晶粒尺寸(通常为10-30纳米)时,金属的强度会偏离Hall-Petch关系,有些金属的强度不再升高甚至下降,这种纳米尺度下的软化现象通常归因 ...
    本站小编 Free考研考试 2020-04-08
  • 利用梯度纳米结构显著降低Cu-Ag合金干摩擦系数研究取得重要突破
    机械运转时材料之间的摩擦会造成能量的损耗机械、工作效率降低及部件寿命缩短。减小摩擦的方法往往只能依赖添加润滑或在部件表面进行减摩涂层处理。材料本体在一定工况条件下的摩擦系数难以通过结构调控而改变。例如:金属材料的干摩擦系数普遍较高,通常处于0.6-1.2之间,主要原因是摩擦过程中接触表面下方产生塑性 ...
    本站小编 Free考研考试 2020-04-08
  • 我所研制出窄带隙分布半导体性单壁碳纳米管
    单壁碳纳米管(SWCNT)因碳原子排布方式不同可表现为金属性或半导体性,其中半导体性SWCNT具有纳米尺度、良好的结构稳定性、可调的带隙和高载流子迁移率,被认为是构建高性能场效应晶体管的理想沟道材料,并可望在新一代柔性电子器件中获得应用。然而,金属性和半导体性SWCNT的结构和生成能差异细微,通常制 ...
    本站小编 Free考研考试 2020-04-08