删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

杂原子调控的碳催化低碳烷烃氧化脱氢反应机理取得新进展

本站小编 Free考研考试/2020-04-08

低碳烷烃,包括C2~C6链烷烃,主要来源于天然气、油田伴生气、页岩气、石化和炼油过程的副产。它们储量丰富,价格低廉,由于所含的饱和碳氢键十分惰性,工业用途狭窄,一直以来作为低价值的燃料使用。而低碳烷烃通过转化制备的低碳烯烃,其用途则十分广泛,是塑料、橡胶、树脂、高分子、医药、农药、有机化工、精细化工、石油添加剂等后续产业链赖以生存的基石,预计2016年全球需求量将达到2.59亿吨/年。因此,高效转化低碳烷烃 (C2~C6) 生产相应烯烃不仅可以加速利用非传统燃料气作为化石能源的补充原料,也可以解除化学工业对石油资源的单纯依赖,这被誉为21世纪能源利用和转化领域的里程碑。
  金属所沈阳材料科学国家(联合)实验室催化材料研究部苏党生研究员领导的科研团队一直致力于低碳烷烃催化转化制烯烃的基础研究以及工业化应用探索,自2008年发现非金属纳米碳可替代传统贵金属及金属氧化物用于催化烷烃氧化脱氢反应以来,非金属纳米碳在传统热催化中的研究如雨后春笋般迎来蓬勃发展,其在低碳烷烃氧化脱氢反应中展现出较传统金属催化剂更高的活性、抗积碳性能以及突出的稳定性(Science, 2008, 322, 73)。随后,他们通过有机小分子模型化合物( J. Am. Chem. Soc., 2009,131,11296 )及化学滴定法( Angew. Chem. Int. Ed., 2013, 52,14224 )证实了碳表面醌羰基(C=O)是烃类氧化脱氢反应的选择性活性位,醌羰基中富电子的氧具有亲核性,易进攻烷烃中的氢原子导致碳氢键断裂生成烯烃,而还原态的氢醌基团可被氧气氧化恢复原有活性位醌羰基,从而完成催化循环。然而,碳表面的缺陷和边缘往往容易将分子氧解离为亲电氧物种(O-, O22-),进攻烯烃中富电子的碳碳双键(C=C),导致烯烃过度氧化生成碳氧化物,降低烯烃选择性。
  近期,苏党生研究员团队利用非金属元素氮、磷、硼调节碳表面电子云分布,以此来调控碳催化剂的催化性能,揭示了三者改性的区别。氮原子具有与碳原子相近的原子半径,可通过化学气相沉积法将其引入到碳纳米管骨架中,形成石墨型N物种,富电子的氮元素提高了碳纳米管骨架的电子云密度,从而促进了周围碳原子对分子氧的解离,使得碳催化剂对烷烃的活化更容易,其表观活化能的降低与石墨氮含量(NG)存在如下关系:Ea=117.2-32.7 NG( Chem.Commum.,2013,49,8151 )。具有较大原子半径的磷原子不进入碳纳米管骨架,但具有空p轨道的磷原子对未成对电子具有容纳能力,可对碳表面缺陷/边缘和氧官能团的富余电子进行有效控制。随着磷含量持续增加,磷改性碳纳米管在异戊烷氧化脱氢反应中的烯烃选择性呈现先增加后降低的火山型分布(图1),同时磷改性碳纳米管抗氧化温度的升高、以及在异戊烷氧化脱氢反应中反应速率的下降,也呈现先急后缓的对应关系(图2A)。结合程序升温脱附(TPD,图3 A, B)、全反射红外光谱(ATR-IR,图3C)以及动力学测试,揭示了磷改性碳纳米管催化性能的微观机理(图3D):磷首先抑制表面缺陷和边缘对分子氧的活化,导致碳纳米管抗氧化温度的迅速升高,在异戊烷氧化脱氢反应中:分子氧和烷烃消耗速率迅速下降,过度氧化减少且烯烃选择性提升2倍,超过金属催化剂V-Mg-O;磷含量持续增加,碳表面氧官能团与磷形成磷酸酯结构(C-O-PO3),其脱氢活性位醌羰基也遭到抑制,因而在异戊烷氧化脱氢中烯烃选择性下降;过量磷将占据所有碳表面,因而导致催化剂在异戊烷氧化脱氢反应中完全失活。同样具有空p轨道的硼原子在调控碳纳米管表面电子分布及异戊烷氧化脱氢性能时却展现不同结果:随硼含量增加,硼改性碳纳米管抗氧化温度的升高(图2 B)、异戊烷氧化脱氢反应速率下降(图2 B)以及烯烃选择性升高(图1)都呈现平台效应,这表明硼属于选择性改性试剂,而磷属于非选择性改性试剂。另外,以磷、硼杂原子改性的纳米金刚石催化剂用于丙烷氧化脱氢反应时,脱氢选择性也获得相应提高。该系列研究工作不仅从原子层面揭示了催化反应机理,同时拉近了理论研究与工业应用的距离。
  上述工作被发表在ChemSusChem(2014, 7, 3476),Catalysis Today(2015, 249, 161),ACS Catalysis(2015, 5, 2436)以及Chemical Communications(2015, 51,9145)上,该研究得到了国家重点基础研究发展计划973项目(批准号:2011CBA00504)、国家自然科学基金(批准号:51221264、21303226)和中石化项目资助。

  图1 磷、硼改性碳纳米管在异戊烷氧化脱氢反应中产物分布变化

  图2 磷(A)、硼(B)改性碳纳米管抗氧化温度及在异戊烷氧化脱氢反应中反应速率变化

  图3 磷改性碳纳米管的TPD(A,B)、ATR-IR(C)谱图及在异戊烷氧化脱氢反应中机理示意图(D)

相关话题/烷烃 机理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 非晶合金变形机理取得新进展—非晶合金变形中的“加工硬化”现象
    众所周知,非晶合金的变形依靠剪切变形及剪切带来进行,但是由于变形过程中的形变软化,非晶合金的变形高度局限于极少量的剪切带内,从而表现为宏观脆性。由于缺乏晶体材料中的位错及晶界等强化机制,形变软化一直被视为非晶合金的本质变形特征,也极大地影响了其应用前景。  非晶合金中,如果剪切变形和剪切带的产生被抑 ...
    本站小编 Free考研考试 2020-04-08
  • 纳米层状金属材料塑性变形机理研究取得新进展
    当金属材料具有纳米尺度微结构时,虽然其强度可以得到显著提高,但其塑性却因剪切带的过早出现而明显下降,导致多数纳米尺度金属材料(如纳米/超细晶金属、纳米层状金属材料等)无法拥有良好的强塑性匹配。关键的科学问题在于:在这些致命的剪切带中材料为什么容易发生高度应变局部化的大塑性变形?其基本的变形机制如何? ...
    本站小编 Free考研考试 2020-04-08
  • 额外电子诱导共价强化机理研究取得重要进展
    材料的强韧化一直是传统金属材料研究的核心问题之一。一般地,由于存在金属键,纯金属强度低、塑性好。而金属间化合物、准晶和金属玻璃等则强度高、脆性大、塑性变形能力差,但造成这一共性现象的原因迄今不明。金属材料可以通过传统的强化方式(如加工硬化、细晶强化、固溶、沉淀和弥散强化等)和新的强化方式(如纳米孪晶 ...
    本站小编 Free考研考试 2020-04-08
  • LiFePO4水热合成机理及大容量锂离子电池正极研究进展
    新能源的不断开发和利用是人类社会可持续发展的基础。目前,对于绝大部分的新能源(风能、太阳能、潮汐能等)来说,其非连续性使得人们必须使用大容量储能装置将这些间歇性的能量储存起来,随后再均匀连续地供人们使用。因此,对大型储能装置的能量密度提出了更高的要求。与其它储能装置相比,锂离子电池具有环保、高效的特 ...
    本站小编 Free考研考试 2020-04-08
  • 我所参与完成的“超长寿命疲劳裂纹萌生机理与寿命预测”获得2018年国家自然科学二等奖
    1月8日,2018年度国家科学技术奖励大会在北京人民大会堂隆重举行。我所参与完成的“超长寿命疲劳裂纹萌生机理与寿命预测”获得国家自然科学奖二等奖,主要完成人为:王清远(四川大学)、杨振国(金属所)、杨帆(金属所)、张继明(金属所)。  该项目在超长寿命疲劳领域进行了20多年深入的实验和理论研究,建立 ...
    本站小编 Free考研考试 2020-04-08
  • 我所实现温和条件下生物质脂肪酸到长链烷烃的高效转化
    近日,我所生物能源化学品研究组(DNL603)王峰研究员团队利用光催化脱羧策略,通过调控自由基中间物在催化剂表面的转化,实现了温和条件下长链脂肪酸到烷烃的高效转化,为生物质高效转化为绿色燃料提供了新思路。  生物油脂精炼和造纸工业生产过程中,会副产大量低值、可再生的长链脂肪酸。脂肪酸经过催化脱氧过程 ...
    本站小编 Free考研考试 2020-04-08
  • 我所揭示无机/有机界面三线态能量转移动力学机理
    近日,我所光电材料动力学特区研究组(11T6组)吴凯丰研究员团队通过合理构建无机纳米晶-多环芳烃分子模型体系的能级结构,结合超快时间分辨光谱技术,揭示了电荷转移态介导的三线态能量转移(CT-mediatedTET)模型,在无机/有机界面三线态能量转移动力学研究方面取得新进展。  近年来,无机纳米晶敏 ...
    本站小编 Free考研考试 2020-04-08
  • 我所发现锰离子掺杂钙钛矿单晶荧光动力学调控机理
    近日,我所超快时间分辨光谱与动力学研究组(1110组)金盛烨研究员团队在正二价锰离子(Mn2+)掺杂的单一CsPbCl3钙钛矿微晶中,通过改变激发条件,成功实现了连续、可逆、宽范围、高稳定性的发光颜色调控,发现锰离子掺杂钙钛矿单晶荧光动力学调控机理。  CsPbX3(X=Cl-,Br-,I-)钙钛矿 ...
    本站小编 Free考研考试 2020-04-08
  • 我所揭示非铅钠铟基双钙钛矿纳米晶动力学机理
    近日,我所复杂分子体系反应动力学研究组(1101组)韩克利研究员团队揭示了非铅钠铟基双钙钛矿纳米晶动力学机理。该团队创新性地采用变温热注射法成功合成未掺杂及银掺杂的非铅双钙钛矿纳米晶,银掺杂纳米晶展现出明亮的黄色荧光,并详细讨论了其自陷激子发光动力学机理。  非铅钙钛矿纳米晶由于其无毒性和稳定性引起 ...
    本站小编 Free考研考试 2020-04-08
  • 我所揭示低维全无机铯铜卤化物纳米晶动力学机理
    近日,我所复杂分子体系反应动力学研究组(1101组)韩克利研究员团队揭示了低维全无机铯铜卤化物纳米晶动力学机理。  有机-无机杂化金属卤化物以其优异的光学和电子性能在各种光电应用中显示出广阔的前景。这类材料特殊的结构可调性使它们能够形成各种类型的晶体结构:从三维网络、二维层状结构、一维链状结构,到最 ...
    本站小编 Free考研考试 2020-04-08