能否建立一种工艺,不仅能够细化、均匀化、致密化镁合金组织,而且能够同时实现第二相的溶解且不改变工件的形状和尺寸?沈阳材料科学国家(联合)实验室马宗义研究员所领导的课题组,采用搅拌摩擦加工技术(Friction Stir Processing, FSP),针对这一问题进行了深入细致的研究,研究工作取得了一系列的进展。
他们对高铝含量的Mg-Al-Zn和稀土镁合金进行了研究,发现FSP能够破碎粗大的铸态组织并导致动态再结晶;破碎粗大的网状第二相粒子并使其大部分溶解;消除孔洞疏松等铸造缺陷。1-2道次的FSP即可实现微观组织重构,把粗大非均质铸造组织转变成细小、均匀、致密的锻造组织(图1)。尤其重要的是,FSP获得的是等轴细晶结构的过饱和固溶体,并且具有高角晶界比率高、织构弱的特点,这是其它塑性加工手段无法实现的。人工时效后,FSP合金中析出弥散的第二相粒子,显著提高了材料的力学性能。例如,对于铸造AZ80镁合金,FSP后的屈服强度、抗拉强度、延伸率较铸态母材分别提高了63%、170%、510%;FSP+时效后,分别提高了130%、194%、315%。对于铸造AZ91D,FSP后疲劳强度从45 MPa提高到105 MP(图2a)。此外,FSP能够实现镁合金铸件的缺陷修复,例如,对于Mg-Nd-Zn-Zr铸件的10mm深缩松区,FSP修复后强度和塑性均高于无缺陷母材。
除显著改善力学性能外,FSP还是获得镁合金超塑性的理想加工手段。例如,FSP的Mg-Zn-Y-Zr在450oC和1×10-2 s-1的高应变速率下获得了1110%的良好超塑性(图2),FSP Mg-Gd-Y-Zr在415oC和1×10-3 s-1的应变速率下也获得1110%的超塑性。FSP所获得的超塑性值和最佳超塑变形温度及应变速率均明显高于其它加工工艺取得的效果,这主要是因为:细小等轴晶粒有利于晶界的滑移和转动;适量的第二相弥散粒子不仅明显提高细晶结构的热稳定性而且大大减少孔洞萌生的可能;高比例的高角晶界促进晶界滑移而明显加速超塑变形动力学。
FSP一个显著特点是,在极短时间内使大部分第二相溶入基体,类似现象在搅拌摩擦焊过程中也有报道。然而这一现象一直没有从理论上得到解释。他们通过分析Mg-Al合金的扩散过程合理解释了这一现象。在常规静态热处理条件下,Al在Mg中的扩散系数为:
![](http://www.imr.cas.cn/xwzx/kydt/201205/W020120524418064109765.jpg)
![](http://www.imr.cas.cn/xwzx/kydt/201205/W020120524418064116984.jpg)
可见,利用FSP的剧烈塑性变形与温升以及由此产生的机械破碎及均匀混合、动态再结晶、元素加速扩散,可同时实现铸造镁合金的细化、致密化、均匀化,改善其力学性能并赋予其超塑性特性。尤其是FSP具有固溶处理的功效,并可对零件进行局部强化或缺陷修复,这是传统的热处理和塑性加工技术无法比拟的。由此建立了改善镁合金力学性能的FSP+时效工艺,该研究结果对于理解镁合金的再结晶机制和元素扩散也有重要参考价值。
系列论文先后发表在Acta Mater (57, 14 (2009) 4248)、Scripta Mater (56, 5 (2007) 397; 58, 5 (2008) 361; 61, 6 (2009) 568, 65, 4 (2011) 335), Metall Mater Trans A (40, 10 (2009) 2447; 43, 6 (2012) 2094)、J Mater Res (23, 5 (2008) 1203)、J Alloy Compd (509, 6 (2011) 2879) 等期刊上,其中发表在Scripta Mater上的一篇论文被评为2007年中国百篇最具影响国际学术论文。
![](http://www.imr.cas.cn/xwzx/kydt/201205/W020120524418064119964.jpg)
![](http://www.imr.cas.cn/xwzx/kydt/201205/W020120524418064122610.jpg)