方春华,黄超兰,王建雨.Volterra型积分微分方程Chebyshev谱配置法求解[J].,2023,63(2):215-220 | ||||
Volterra型积分微分方程Chebyshev谱配置法求解 | ||||
Volterra type integral-differential equations solution by Chebyshev spectral collocation method | ||||
DOI:10.7511/dllgxb202302013 | ||||
中文关键词:Volterra型积分微分方程第二类Volterra积分方程组Chebyshev谱配置法Clenshaw-Curtis求积谱精度 | ||||
英文关键词:Volterra type integral-differential equationVolterra integral equations of the second kindChebyshev spectral collocation methodClenshaw-Curtis quadraturespectral accuracy | ||||
基金项目:湖南省自然科学基金资助项目(2022JJ30276). | ||||
| ||||
摘要点击次数:190 | ||||
全文下载次数:339 | ||||
中文摘要: | ||||
采用Chebyshev谱配置法求解Volterra型积分微分方程.首先将积分微分方程改写成等价的第二类Volterra积分方程组,再取Clenshaw-Curtis点为配置点,然后利用Clenshaw-Curtis求积法则离散方程中积分项得到配置方程组,最后给出在L∞范数空间下的误差分析,并用数值实例验证理论分析的结果.该方法既有谱精度,程序又易实现. | ||||
英文摘要: | ||||
The Chebyshev spectral collocation method is proposed to solve Volterra type integral-differential equations. Firstly, the integral-differential equation is rewritten into an equivalent system of Volterra integral equations of the second type, and Clenshaw-Curtis point is taken as the collocation point, then Clenshaw-Curtis quadrature rule is used to discretize the integral term in the equation to obtain the collocation equations, and finally the error analysis is conducted in L∞ norm space and numerical examples are presented to verify the theoretical results. The method has spectral accuracy and is easy to implement. | ||||
查看全文查看/发表评论下载PDF阅读器 | --> | |||
关闭 |
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)