删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Volterra型积分微分方程Chebyshev谱配置法求解

本站小编 Free考研考试/2024-01-16

-->
方春华,黄超兰,王建雨.Volterra型积分微分方程Chebyshev谱配置法求解[J].,2023,63(2):215-220
Volterra型积分微分方程Chebyshev谱配置法求解
Volterra type integral-differential equations solution by Chebyshev spectral collocation method
DOI:10.7511/dllgxb202302013
中文关键词:Volterra型积分微分方程第二类Volterra积分方程组Chebyshev谱配置法Clenshaw-Curtis求积谱精度
英文关键词:Volterra type integral-differential equationVolterra integral equations of the second kindChebyshev spectral collocation methodClenshaw-Curtis quadraturespectral accuracy
基金项目:湖南省自然科学基金资助项目(2022JJ30276).
作者单位
方春华,黄超兰,王建雨
摘要点击次数:190
全文下载次数:339
中文摘要:
采用Chebyshev谱配置法求解Volterra型积分微分方程.首先将积分微分方程改写成等价的第二类Volterra积分方程组,再取Clenshaw-Curtis点为配置点,然后利用Clenshaw-Curtis求积法则离散方程中积分项得到配置方程组,最后给出在L∞范数空间下的误差分析,并用数值实例验证理论分析的结果.该方法既有谱精度,程序又易实现.
英文摘要:
The Chebyshev spectral collocation method is proposed to solve Volterra type integral-differential equations. Firstly, the integral-differential equation is rewritten into an equivalent system of Volterra integral equations of the second type, and Clenshaw-Curtis point is taken as the collocation point, then Clenshaw-Curtis quadrature rule is used to discretize the integral term in the equation to obtain the collocation equations, and finally the error analysis is conducted in L∞ norm space and numerical examples are presented to verify the theoretical results. The method has spectral accuracy and is easy to implement.
查看全文查看/发表评论下载PDF阅读器
关闭
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19