麻云平,李楷,郑奕,刘松,王运龙.基于聚类分析及灰色关联度的船舶系缆力影响因素分析[J].,2023,63(4):377-384 |
基于聚类分析及灰色关联度的船舶系缆力影响因素分析 |
Analysis of influencing factors of ship mooring force based on cluster analysis and grey relational degree |
|
DOI:10.7511/dllgxb202304007 |
中文关键词:码头系泊缆绳受力无监督学习聚类分析灰色关联分析 |
英文关键词:port mooringcable forceunsupervised learningcluster analysisgrey relational analysis |
基金项目:国家自然科学基金资助项目(51509033);中央高校基本科研业务费专项资金资助项目(DUT19JC51). |
|
摘要点击次数:125 |
全文下载次数:190 |
中文摘要: |
为研究风、浪、流、涌以及船舶装载状态等因素对码头系泊船舶缆绳受力影响的相对大小及线性关联程度,基于水动力计算软件AQWA计算获得400组不同影响因素组合下的缆绳受力数据,运用机器学习中常用的无监督学习算法k-means++算法以及灰色关联分析方法,分析缆绳受力与影响因素的内在联系.根据分析结果,获得了各因素对不同位置缆绳受力影响的相对大小及线性关联程度.该方法可用于优化系泊缆绳的布置方案. |
英文摘要: |
In order to study the relative magnitude and linear correlation degree of the influence of wind, wave, current, swell and ship loading state on the cable force of the mooring ship in the port, based on the 400 groups of cable force data calculated by hydrodynamic calculation software AQWA under different combinations of influencing factors, the internal relationship between the cable force and the influencing factors is analyzed by using the k-means++algorithm, an unsupervised learning algorithm commonly used in machine learning, and the grey relational analysis method. According to the analysis results, the relative magnitude and linear correlation degree of each factor on the cable force at each position are obtained. The method can be used to optimize the mooring cable layout plan. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |