删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于两步特征加权的模糊支持向量机算法

本站小编 Free考研考试/2024-01-16

-->
鞠哲,宋一明.基于两步特征加权的模糊支持向量机算法[J].,2023,63(4):427-432
基于两步特征加权的模糊支持向量机算法
Fuzzy support vector machine algorithm based on two-step feature weighting
DOI:10.7511/dllgxb202304013
中文关键词:模糊支持向量机特征加权信息增益隶属度函数
英文关键词:fuzzy support vector machinefeature weightinginformation gainmembership function
基金项目:辽宁省自然科学基金资助项目(2019-BS-187);辽宁省教育厅系列项目-青年科技人才“育苗”项目(JYT19027).
作者单位
鞠哲,宋一明
摘要点击次数:95
全文下载次数:154
中文摘要:
提出一种基于两步特征加权的模糊支持向量机算法.首先,利用信息增益算法获取样本的特征权重.然后,计算最大权重的特征与其他特征间的斯皮尔曼相关系数,并将二者相乘后再与原有的特征权重相加,得到新的特征权重,减少弱相关和不相关特征对分类造成的影响.最后,在设计样本模糊隶属度时,不仅考虑样本与类中心的距离,还引入了样本间的亲和度,并将二者进行融合,以此减弱样本分布不均对分类精度的影响.在UCI数据集上的实验表明,与现有流行的几种模糊支持向量机算法相比,所提算法在准确率和F1值上得到了提升.
英文摘要:
A fuzzy support vector machine algorithm based on two-step feature weighting is proposed. Firstly, the information gain algorithm is used to obtain the feature weights of the samples. Then, the Spearman correlation coefficients between the feature with the maximum weight and other features are calculated, and the corresponding Spearman correlation coefficients are multiplied by the maximum feature weight. Then the results are added with the original feature weights to get the new feature weights, so as to reduce the impact of weakly correlated features and irrelevant features on classification. Finally, when designing the fuzzy membership of samples, not only the distance between samples and class center is considered, but also the affinity between samples is introduced. And the distance and the affinity are fused so as to reduce the influence of uneven distribution of samples on classification accuracy. Experiments on UCI dataset show that compared with several popular fuzzy support vector machine algorithms, the proposed algorithm is improved in accuracy and F1 value.
查看全文查看/发表评论下载PDF阅读器
关闭
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19