郝国亮,曾淑婷,庄蔚,谢智红.全局3-彩虹控制数与3-彩虹控制数之差为2和3的树的刻画[J].,2023,63(5):544-550 |
全局3-彩虹控制数与3-彩虹控制数之差为2和3的树的刻画 |
Characterization of trees with difference of their global 3-rainbow domination number and 3-rainbow domination number being 2 and 3 |
|
DOI:10.7511/dllgxb202305014 |
中文关键词:3-彩虹控制全局3-彩虹控制补图刻画 |
英文关键词:3-rainbow dominationglobal 3-rainbow dominationcomplement graphcharacterization |
基金项目:国家自然科学基金资助项目(12061007,11861011). |
|
摘要点击次数:109 |
全文下载次数:129 |
中文摘要: |
对于任意正整数k,图G的k-彩虹控制函数f定义为从图G的顶点集V到集合{1,2,…,k}的幂集的映射,使得任意满足f(u)=?的顶点u,都有∪x∈N(u)f(x)={1,2,…,k},其中N(u)是u的开邻域.图G的k-彩虹控制函数f的权为∑x∈V(G)|f(x)|.如果f是图G及其补图的k-彩虹控制函数,则称f是图G的全局k-彩虹控制函数.图G的k-彩虹控制数γrk(G)和全局k-彩虹控制数γgrk(G)分别指图G的所有k-彩虹控制函数和所有全局k-彩虹控制函数的最小权. 2016年,Amjadi等刻画了γgr2(T)-γr2(T)=1和γgr2(T)-γr2(T)=2成立的所有树T.在此基础上,通过对图的结构分析,利用分类讨论法完全刻画了γgr3(T)-γr3(T)=2和γgr3(T)-γr3(T)=3成立的所有树T,推广了Amjadi等的结果. |
英文摘要: |
For any positive integer k, k-rainbow dominating function f of graphG is a mapping from the vertex set Vto the power set of set {1,2,…,k} such that any vertex u with f(u)=? satisfies that ∪x∈N(u)f(x)={1,2,…,k}, where N(u) is the open neighborhood of u. The weight ofk-rainbow dominating function f of graph Gis ∑x∈V(G)|f(x)|. If fis ak-rainbow dominating function of graph G and its complement graph, then f is called a globalk-rainbow dominating function of graph G. The k-rainbow domination number γrk(G) and global k-rainbow domination number γgrk(G) are the minimum weights ofk-rainbow dominating function and global k-rainbow dominating function of graph G, respectively. In 2016, Amjadi et al. characterized all trees Tfor which γgr2(T)-γr2(T)=1 and γgr2(T)-γr2(T)=2. Based on above results, by classifying the structure of the graphs into different cases, all trees T for which γgr3(T)-γr3(T)=2 and γgr3(T)-γr3(T)=3 are completely characterized, which generalizes the result of Amjadi et al. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |