苏磊磊,南基洙,韦扬江.奇特征有限域上的辛图[J].,2022,62(1):102-110 |
奇特征有限域上的辛图 |
Symplectic graphs over finite fields of odd characteristic |
|
DOI:10.7511/dllgxb202201013 |
中文关键词:辛图d-Deza图次成分距离 |
英文关键词:symplectic graphd-Deza graphsubconstituentsdistance |
基金项目:国家自然科学基金资助项目(11771176). |
|
摘要点击次数:318 |
全文下载次数:134 |
中文摘要: |
令Fq是特征数为奇数的有限域.选取辛空间F(2ν)q中所有二维全迷向子空间作为顶点来构造辛图,并规定两个顶点是相邻的当且仅当它们的交是一维子空间.通过计算可知,当ν=3时,辛图是4-Deza图;当ν≥4时,辛图是5-Deza图.此外,研究了辛图次成分的正则性,并且计算了次成分中两个不同顶点之间的参数.结果表明,当ν=2时,辛图的两个次成分都是正则的;而当ν≥3时,辛图的两个次成分都不是正则的. |
英文摘要: |
Let Fq be a finite field of odd characteristic, a symplectic graph whose vertex set is all two dimensional totally isotropic subspaces of the symplectic space F(2ν)q is constructed, and two vertices are adjacent if and only if their intersection is a one dimensional subspace. By calculating, symplectic graph is a 4-Deza graph whenν=3 and a 5-Deza graph when ν≥ 4. Moreover, the regularity of the subconstituents of the symplectic graph is studied and the parameter of two distinct vertices of the subconstituents is calculated. The results show that two subconstituents are regular when ν=2 and not regular when ν≥ 3. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |