高红,黄佳欢,刘仁邦,杨元生.圈与圈克罗内克乘积图罗马{3}-控制[J].,2022,62(3):309-320 |
圈与圈克罗内克乘积图罗马{3}-控制 |
Roman {3}-domination in Kronecker product of cycles |
|
DOI:10.7511/dllgxb202203011 |
中文关键词:罗马{3}-控制数圈克罗内克乘积 |
英文关键词:Roman {3}-domination numbercycleKronecker product |
基金项目:国家自然科学基金资助项目(62071079). |
|
摘要点击次数:126 |
全文下载次数:135 |
中文摘要: |
给定图G=(V,E),f是从顶点集合V到{0,1,2,3}的函数,如果对于所有f(v)=0的顶点v都有其开邻域中顶点的函数值之和大于等于3,并且对于所有f(v)=1的顶点v都有其开邻域中顶点的函数值之和大于等于2,那么f称为图G的罗马{3}-控制函数(R{3}-DF).f的权重w(f)是图G中所有顶点的函数值之和,权重的最小值称为图G的罗马{3}-控制数.确定图罗马{3}-控制数是NP困难问题.给出了圈与圈克罗内克乘积图罗马{3}-控制数的上界和下界.通过构造可递推的罗马{3}-控制函数,得到了圈与圈克罗内克乘积图的罗马{3}-控制数的上界.结合前人的成果得到了圈与圈克罗内克乘积图罗马{3}-控制数的下界. |
英文摘要: |
Given a graph G=(V, E), f is a function from vertex set V to {0, 1, 2, 3}. If for every vertex v withf(v)=0, the sum of the function values of the vertices in the open neighborhood ofv is greater or equal to 3, and for every vertex vwith f(v)=1, the sum of the function values of the vertices in the open neighborhood of v is greater or equal to 2, then fis called a Roman {3}-dominating function (R{3}-DF) of graph G. The weight off, w(f), is the sum of the function values of the vertices all over graph G. The minimum of w(f) is the Roman {3}-domination number of graph G. To determine the Roman {3}-domination number of a graph is an NP complete problem. The upper and lower bounds on the Roman {3} domination numbers of Kronecker product of cycles are presented. The upper bounds are obtained by constructing recursive Roman {3}-dominating functions. The lower bounds are determined based on the result given by others. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |