删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于最近邻区间的不完整基因表达数据多目标聚类算法

本站小编 Free考研考试/2024-01-16

-->
常巧珍,曹隽喆,顾宏,李丹.基于最近邻区间的不完整基因表达数据多目标聚类算法[J].,2021,61(4):
基于最近邻区间的不完整基因表达数据多目标聚类算法
Multi objective clustering algorithm based on the nearest neighbor interval for incomplete gene expression data
DOI:10.7511/dllgxb202104011
中文关键词:基因表达数据缺失值多目标聚类最近邻规则
英文关键词:gene expression datamissing valuemulti-objective clusteringthe nearest neighbor rule
基金项目:国家自然科学基金资助项目(81872247).
作者单位
常巧珍,曹隽喆,顾宏,李丹
摘要点击次数:247
全文下载次数:147
中文摘要:
针对不完整基因表达数据的聚类问题,提出了一种多目标NSGA-Ⅱ框架下缺失值填补与聚类协同优化的算法.算法根据欧式距离确定不完整基因的近邻基因,以缺失值的最近邻区间为约束,采用混合编码将缺失值填补与聚类中心优化融入NSGA-Ⅱ进化过程,通过将数据集的统计信息与聚类结果共同作为缺失值填补因素,提升不完整基因表达数据的填补准确度及聚类性能.在多个基因表达数据集上的实验结果表明,所提算法得到了更接近真实表达值的填补结果及更紧凑的聚类效果,且聚类结果具有统计显著性.
英文摘要:
Aiming at the problem of clustering incomplete gene expression data, a collaborative optimization algorithm for missing value imputation and clustering is proposed in the framework of multi-objective NSGA-Ⅱ. The algorithm determines the neighbor genes of incomplete genes according to Euclidean distance. Constrained by the nearest neighbor interval of missing value, the algorithm combines missing value imputation with clustering center optimization into NSGA-Ⅱ by mixed encoding. Taking statistical information of datasets and the clustering results into account is helpful to improve the imputation accuracy and clustering performance. Experimental results on multiple gene expression datasets show that the proposed algorithm obtains an imputation result closer to the true expression value and a more compact clustering effect. Furthermore, the proposed algorithm proves to be statistically significant.
查看全文查看/发表评论下载PDF阅读器
关闭
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19