杨利民,年四洪.无 K3子图的图中1-因子计数[J].,2021,61(5):546-550 |
无 K3子图的图中1-因子计数 |
Counting of 1-factors in graphs without K3 subgraphs |
|
DOI:10.7511/dllgxb202105014 |
中文关键词:N(G,k)色多项式S(n)-因子1-因子 |
英文关键词:N(G, k)chromatic polynomialS(n)-factor1-factor |
基金项目:大理大学高层次人才科研启动基金资助项目(KY0719203410). |
|
摘要点击次数:215 |
全文下载次数:129 |
中文摘要: |
1-因子或完美匹配的计数是NP 难的,利用S(n)-因子的表示公式和分支分析方法研究1-因子或完美匹配具有理论和实际意义.首先,得到无K3子图的图中1-因子计数公式和组合恒等式;其次,导出1-因子或完美匹配存在和不存在的充分必要条件;最后,得出一个结论:存在连通图使得它的1-因子的个数大于任意的自然数N. |
英文摘要: |
It is NP hard to count 1-factor or perfect matching. It is of theoretical and practical significance to study 1-factor or perfect matching by using representation formula and branch analysis method of S(n)-factor. Firstly, the counting formulas and combinatorial identities of 1-factors in graphs without K3 subgraphs are obtained. Secondly, the necessary and sufficient conditions for the existence and nonexistence of 1-factors or perfect matching are derived. Finally, a conclusion is given that there exists a connected graph such that the number of 1-factors is greater than any natural number N. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |