删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于k密集近邻算法的局部Fisher向量编码方法

本站小编 Free考研考试/2024-01-16

-->
冀治航,胡小鹏,杨博,田云云,王凡.基于k密集近邻算法的局部Fisher向量编码方法[J].,2020,60(4):411-419
基于k密集近邻算法的局部Fisher向量编码方法
Local Fisher vector encoding method based onk-dense neighborhood algorithm
DOI:10.7511/dllgxb202004010
中文关键词:视觉词包模型图像分类Fisher向量编码k密集近邻算法
英文关键词:bag-of-visual-words modelimage classificationFisher vector encodingk-dense neighborhood algorithm
基金项目:国家重大专项资助项目(2018YFA0704605);“十三五”重大专项资助项目(2017ZX05064).
作者单位
冀治航,胡小鹏,杨博,田云云,王凡
摘要点击次数:400
全文下载次数:356
中文摘要:
在基于视觉词包模型的图像分类方法中,Fisher向量编码是常用的图像表示方法之一.该方法利用每一个特征关于所有高斯子模型似然函数的梯度信息来构建图像表达.而在编码过程中,每一个特征都会被投影到所有的高斯子模型上并进行编码,同时子模型之间的内在差异也未被考虑,这些不足削弱了Fisher向量的表达能力.为此,提出一种基于k密集近邻算法的局部Fisher向量编码方法.在编码过程中该方法引入局部性约束原则,并利用图像特征空间中高斯子模型间的拓扑结构差异.在多个数据集上进行测试,结果表明改进方法能够有效提升分类的准确率.
英文摘要:
For the image classification methods based on the bag-of-visual-words model, Fisher vector (FV) encoding is one of the popular image representation approaches. In this method, gradient information of the likelihood functions, which is achieved by fitting each feature with all Gaussian sub-models, is used to build image representation. However, in this encoding procedure, each feature is mapped to all of the Gaussian sub-models and encoded by them, and the inherent differences between these sub-models have not been considered. These drawbacks limit the representative ability of the Fisher vector. To solve these problems, a local Fisher vector encoding approach based on k-dense neighborhood(KDN) algorithm is proposed, which introduces the local constraint and utilizes the difference between the topological structures of the Gaussian sub-models.Experiments are conducted on several benchmark datasets, and the results demonstrate the effectiveness of the proposed method in improving the accuracy of the classification.
查看全文查看/发表评论下载PDF阅读器
关闭
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19