冀治航,胡小鹏,杨博,田云云,王凡.基于k密集近邻算法的局部Fisher向量编码方法[J].,2020,60(4):411-419 |
基于k密集近邻算法的局部Fisher向量编码方法 |
Local Fisher vector encoding method based onk-dense neighborhood algorithm |
|
DOI:10.7511/dllgxb202004010 |
中文关键词:视觉词包模型图像分类Fisher向量编码k密集近邻算法 |
英文关键词:bag-of-visual-words modelimage classificationFisher vector encodingk-dense neighborhood algorithm |
基金项目:国家重大专项资助项目(2018YFA0704605);“十三五”重大专项资助项目(2017ZX05064). |
|
摘要点击次数:400 |
全文下载次数:356 |
中文摘要: |
在基于视觉词包模型的图像分类方法中,Fisher向量编码是常用的图像表示方法之一.该方法利用每一个特征关于所有高斯子模型似然函数的梯度信息来构建图像表达.而在编码过程中,每一个特征都会被投影到所有的高斯子模型上并进行编码,同时子模型之间的内在差异也未被考虑,这些不足削弱了Fisher向量的表达能力.为此,提出一种基于k密集近邻算法的局部Fisher向量编码方法.在编码过程中该方法引入局部性约束原则,并利用图像特征空间中高斯子模型间的拓扑结构差异.在多个数据集上进行测试,结果表明改进方法能够有效提升分类的准确率. |
英文摘要: |
For the image classification methods based on the bag-of-visual-words model, Fisher vector (FV) encoding is one of the popular image representation approaches. In this method, gradient information of the likelihood functions, which is achieved by fitting each feature with all Gaussian sub-models, is used to build image representation. However, in this encoding procedure, each feature is mapped to all of the Gaussian sub-models and encoded by them, and the inherent differences between these sub-models have not been considered. These drawbacks limit the representative ability of the Fisher vector. To solve these problems, a local Fisher vector encoding approach based on k-dense neighborhood(KDN) algorithm is proposed, which introduces the local constraint and utilizes the difference between the topological structures of the Gaussian sub-models.Experiments are conducted on several benchmark datasets, and the results demonstrate the effectiveness of the proposed method in improving the accuracy of the classification. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |