柳扬,杨琦,冯恩民,修志龙.一簇微生物间歇发酵酶催化非线性动力系统强稳定性[J].,2019,59(6):656-662 |
一簇微生物间歇发酵酶催化非线性动力系统强稳定性 |
Strong stability of a family enzyme-catalyzed nonlinear dynamic system in microbial batch fermentation |
|
DOI:10.7511/dllgxb201906015 |
中文关键词:非线性动力系统线性变分系统基本矩阵解强稳定性 |
英文关键词:nonlinear dynamic systemlinear variational systemfundamental matrix solutionstrong stability |
基金项目:国家自然科学基金资助项目(61712121). |
|
摘要点击次数:422 |
全文下载次数:368 |
中文摘要: |
针对分段线性连续函数各参量的微生物间歇发酵酶催化非线性动力系统中状态变量及其变化速率的充分光滑性以及辨识参量的分段线性等特征,应用比较原理证明此类非线性动力系统及子动力系统解对应的线性变分系统的基本矩阵解的有界性.提出没有平衡点的非线性动力系统解关于初始点及一列解点上扰动后的强稳定性定义.在适当条件下证明了一簇非线性动力系统NLDS(u(g,t))的强稳定性. |
英文摘要: |
In a microbial batch fermentation enzyme-catalyzed nonlinear dynamic system, due to the sufficient smoothness of state variables and rates in a piecewise linear continuous function and the piecewise linearity of identification parameters, the comparison principle is used to prove the boundedness of the fundamental matrix solutions of the linear variational systems corresponded by the nonlinear dynamic system and sub dynamic system solution. The definition of the strong stability of solutions of nonlinear dynamic systems without equilibrium points disturbed on initial point and a serial solution points is proposed. In perfect condition, the strong stability of a family nonlinear dynamic system NLDS(u(g,t)) is proved. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |