任爱红.基于确定可能性均值法求解模糊随机双层规划问题[J].,2018,58(2):213-220 |
基于确定可能性均值法求解模糊随机双层规划问题 |
A method based on crisp possibilistic mean value for solving fuzzy random bilevel programming problem |
|
DOI:10.7511/dllgxb201802016 |
中文关键词:双层规划模糊随机变量模糊数K次最好算法 |
英文关键词:bilevel programmingfuzzy random variablefuzzy numberKth-best algorithm\@ |
基金项目:国家自然科学基金资助项目(61602010);陕西省自然科学基础研究计划项目(2017JQ6046);陕西省教育厅专项科研计划项目(17JK0047). |
|
摘要点击次数:999 |
全文下载次数:1006 |
中文摘要: |
针对目标函数和约束函数中系数均为模糊随机变量的双层规划问题,基于模糊随机变量的期望值概念,将原模糊随机双层规划问题变形为一个模糊双层规划问题.采用模糊数的确定可能性均值对上下层目标函数进行去模糊化,利用基于可能性测度的模糊机会约束方法处理模糊约束函数,提出模糊随机双层确定可能性均值-机会约束规划模型,并给出其确定等价模型,再运用K次最好算法求解最终确定模型.最后通过数值例子验证了所提方法的可行性. |
英文摘要: |
A kind of bilevel programming problem involving fuzzy random variable coefficients in both objective functions and constraint functions is considered. Based on the notion of the expectation of a fuzzy random variable, the fuzzy random bilevel programming problem is converted into a fuzzy bilevel programming problem. Subsequently, the crisp possibilistic mean value of a fuzzy number is used to defuzzy the upper and lower level objective functions and fuzzy chance constrained method based on possibility is applied to handle fuzzy constraint functions, and then a fuzzy random bilevel crisp possibilistic mean value-chance constrained programming model is developed. Then the crisp equivalent model is given and the Kth-best algorithm is employed to deal with it. Finally, numerical examples testify the feasibility of the proposed method. |
查看全文查看/发表评论下载PDF阅读器 |
| --> 关闭 |