摘要: 目的 基于监测、流行病学和最终结果(SEER)数据库探讨影响小肠腺癌(SBA)患者预后的危险因素,构建SBA生存风险模型并评价临床预测价值。
方法 分析SEER数据库纳入的2 639例SBA患者临床信息及预后资料。以总生存期(OS)和疾病特异性生存期(DSS)作为预后预测指标。将患者按7∶3比例随机分为训练组和验证组。利用单因素和多因素Cox回归分析训练组患者影响预后的危险因素,构建预后预测模型,绘制受试者操作特征曲线;由验证组进行预后预测模型验证,绘制临床决策曲线。
结果 SBA患者年龄(
P < 0.01)、肿瘤部位(
P =0.018)、大小(
P =0.042)、T分期(
P < 0.01)、阳性淋巴结检出率(
P < 0.01)、肿瘤单发灶(
P < 0.01)、继发肝脏转移(
P < 0.01)是影响OS的独立危险因素;年龄(
P < 0.01)、肿瘤大小(
P =0.022)、T分期(
P < 0.01)、阳性淋巴结检出率(
P < 0.01)、肿瘤单发灶(
P < 0.01)、继发肝脏转移(
P < 0.01)是影响DSS的独立危险因素。成功建立预后预测模型,验证结果显示校准的预测曲线与实际曲线具有一致性。
结论 年龄、肿瘤大小、T分期、阳性淋巴结检出率、肿瘤单发灶、继发肝脏转移是影响SBA患者OS和DSS的独立危险因素;除此之外,肿瘤部位也是影响SBA患者OS的独立危险因素。建立的预后预测模型具有良好预测价值,能有效评估SBA患者预后,可为患者提供合理的治疗建议。
基于SEER数据库的小肠腺癌患者预后的危险因素分析及预测模型构建
袁维烨, 肖先皓, 宋禾
中国医科大学附属第一医院胃肠外科/疝外科, 沈阳 110001
收稿日期:
2023-04-03
出版日期:
2024-01-30
发布日期:
2024-01-09
通讯作者:
宋禾E-mail:hsong@cmu.edu.cn
作者简介:
袁维烨(1996-),男,医师,本科.
基金资助:
辽宁省自然科学基金(2023-MS-170)
关键词: 小肠腺癌, 总生存期, 疾病特异性生存期, 预后预测模型 Abstract: Objective To explore the risk factors affecting the prognosis of patients with small bowel adenocarcinoma (SBA), construct the SBA survival risk model, and evaluate the clinical predictive value.
Methods Clinical information and prognosis data of 2 639 patients included in the surveillance, epidemiology, and end results (SEER) database were retrospectively analyzed. Overall survival (OS) and disease specific survival (DSS) were used as prognostic indicators. The training group and validation group were randomized at a 7:3 ratio using univariate and multivariate Cox regression analysis. Prognostic factors affecting SBA survival were screened, and a prognostic prediction model was constructed. The receiver operation characteristic curve, model validation by validation group, and clinical decision curve.
Results Age (
P < 0.01), tumor site (
P=0.018), size (
P=0.042), T stage (
P < 0.01), detection rate of positive lymph nodes (
P P < 0.01), and secondary liver metastasis (P < 0.01) were independent risk factors affecting prognosis of OS in patients with SBA;age (P < 0.01), tumor size (P=0.022), T stage (P < 0.01), detection rate of positive lymph nodes (P < 0.01), single tumor focus (P < 0.01), and secondary liver metastasis (P < 0.01) were independent risk factors affecting the prognosis of DSS in patients with SBA. The nomogram, survival risk assessment model, and calibration prediction curve were consistent with the actual curve. Conclusion Age, tumor size, T stage, detection rate of positive lymph nodes, single tumor focus, and secondary liver metastasis were independent risk factors for OS and DSS in patients with SBA. Tumor site was also an independent risk factor for OS in SBA patients. The established prognostic prediction model has good predictive value, can effectively evaluate the prognosis of SBA patients, and can provide reasonable treatment advice for patients.
Key words: small bowel adenocarcinoma, overall survival, disease specific survival, prognostic prediction model
PDF全文下载地址:
https://journal.cmu.edu.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3350