删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国矿业大学导师教师师资介绍简介-朱春宇

本站小编 Free考研考试/2021-03-28

姓 名 朱春宇 性 别 男
出生年月 1987年7月 籍贯 淮北
民 族 汉族 政治面貌 群众
最后学历 博士研究生 最后学位
技术职称 教授 导师类别 博、硕导
行政职务 无 Email zcyls@cumt.edu.cn
工作单位 中国矿业大学 邮政编码 221116
通讯地址 江苏省徐州市大学路1号
单位电话
个人主页


个人简介
朱春宇,教授,博/硕导。入选江苏省****,于2019年加入中国矿业大学回国工作至今。回国前,旅日学习与工作11年,在日本北海道大学相继取得硕士与博士学位,之后获JSPS外籍特聘研究员资助开展研究工作,2016年至2019年任职北海道大学助理教授。在日本工作期间,主持8项科研项目,包括3项日本政府的科研费项目;获3项竞争性财团基金的研究助成奖励荣誉与经费资助。目前已发表英文论文80余篇,其中第一/通讯作者论文近40篇。
加入中国矿业大学以来,获国家自然科学基金、江苏省自然科学基金、江苏省****人才经费、中国矿业大学人才引进启动经费、中央高校基本业务费等项目经费支持,在研经费250余万。本课题组经费充足,目前已经建成200平米的实验室,设备先进;实验室独立拥有TG-DSC同步热分析仪器、多通道电化学工作站、Pine旋转圆盘电极等测试仪器,以及各类材料制备用的高温管式炉、马弗炉、等静压仪等设备。
团队现有在读硕士与博士生研究生10名。
欢迎报考本团队的博士与硕士研究生!!!
联系方式: zcyls@cumt.edu.cn QQ:
教育与工作经历:
? 2019年-中国矿业大学 教授
? 2016年1月—2019年 日本北海道大学 助理教授
? 2014年10月—2015年12月 日本北海道大学 博士后
? 2012年10月—2014年9月JSPS外籍特聘研究员(JSPS Fellow)
? 2010年10月—2012年9月 日本北海道大学 工学院,博士
? 2008年10月—2010年9月 日本北海道大学 工学院,硕士
? 2004年9月—2008年7月 东北林业大学,本科

获奖、荣誉称号
1. 江苏省****
2. JSPS Fellow
3. 中国矿业大学优秀本科毕业论文指导教师(2020年)

社会、学会及学术兼职
1. 中国可再生能源学会会员
2. IEEE PES中国区电动汽车技术委员会 动力电池技术分委会委员
3. 江苏省可再生能源学会氢能专家委员会委员
4. 先进电工材料与器件专家委员会委员

研究领域
1. 热能存储与利用,传质传热强化;相变储热材料;热界面材料,热管理技术。
2. 电化学储能与应用,电池材料,电化学催化;锂电池,锂金属,锌电池。
3. 氢能与利用;储氢与制氢技术。
4. 生物质高附加值利用及其能源功能材料的制备与应用。
5. 基于燃烧合成技术的能源与功能材料开发。

科研项目
在研项目:
1.中国矿业大学海外引进人员科研启动费,2019-
2.江苏省****,人才资助科研经费,2019-
3.中国矿业大学,中央高校基本业务费,2020-
4.江苏省自然科学基金,青年项目,2020-
5.国家自然科学基金,青年项目,2021-

发表论文
第一或通讯作者(*)论文:
投稿中的论文
1)Nan Sheng, Chunyu Zhu,* Zhonghao Rao. Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material.
2) Bo Zhao, Yuchen Wang, Chongbo Wang, Ruijie Zhu, Nan Sheng, Chunyu Zhu*, Zhonghao Rao. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3.
3)Chunyu Zhu, * Manami Takata, Yoshitaka Aoki, Hiroki Habazaki. Biomass flour-derived porous carbon as superior electrocatalysts for oxygen reduction reaction
4)Chunyu Zhu*, Zihe Chen, Ruijie Zhu, Nan Sheng, Zhonghao Rao. Vertically Aligned Al2O3 Fibers Network Leading to Anisotropically Enhanced Thermal Conductivity of Epoxy Composites
5) Ruijie Zhu, Huijun Yang, Chunyu Zhu, * Sho Kitano, Yoshitaka Aoki, Hiroki Habazaki. Lithiophilic carbon scroll as Li metal host with low tortuosity design and “Dead Li” self-cleaning capability
6)Nan Sheng, Jiahui Lu, Jingdong Hu, Chunyu Zhu*, Zhonghao Rao. Facile preparation and thermal properties of Sn@SnO2 microcapsules for middle temperature thermal storage
已经发表的论文
1. Zhu, R.; *Zhu, C.; Sheng, N.; Rao, Z.; Aoki, Y.; Habazaki, H. A widely applicable strategy to convert fabrics into lithiophilic textile current collector for dendrite-free and high-rate capable lithium metal anode. Chemical Engineering Journal 2020, 124256.
2. Sheng, N.; Zhu, R.; Nomura, T.; Rao, Z.; *Zhu, C.; Aoki, Y.; Habazaki, H.; Akiyama, T. Anisotropically enhanced heat transfer properties of phase change material reinforced by graphene-wrapped carbon fibers. Solar Energy Materials and Solar Cells 2020,206, 110280.
3. Sheng, N.; Rao, Z.; *Zhu, C.; Habazaki, H. Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds. Solar Energy Materials and Solar Cells 2020,205, 110241.
4. Sheng, N.; Rao, Z.; *Zhu, C.; Habazaki, H. Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage. Applied Thermal Engineering 2020,164, 114493.
5. Zhu, R.; Sheng, N.; Rao, Z.; *Zhu, C.; Aoki, Y.; Habazaki, H. Employing a T-shirt template and variant of Schweizer's reagent for constructing a low-weight, flexible, hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal. Journal of Materials Chemistry A 2019,7 (47), 27066-27073.
6. Sheng, N.; Zhu, R.; Dong, K.; Nomura, T.; *Zhu, C.; Aoki, Y.; Habazaki, H.; Akiyama, T. Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. Journal of Materials Chemistry A 2019,7 (9), 4934-4940.
7. Sheng, N.; Nomura, T.; *Zhu, C.; Habazaki, H.; Akiyama, T. Cotton-derived carbon sponge as support for form-stabilized composite phase change materials with enhanced thermal conductivity. Solar Energy Materials and Solar Cells 2019,192, 8-15.
8. Kim, C.; *Zhu, C.; Aoki, Y.; Habazaki, H. Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors. Electrochimica Acta 2019,314, 173-187.
9. Kim, C.; *Zhu, C.; Aoki, Y.; Habazaki, H. Exothermically Efficient Exfoliation of Biomass Cellulose to Value-Added N-Doped Hierarchical Porous Carbon for Oxygen Reduction Electrocatalyst. Industrial & Engineering Chemistry Research 2019,58 (8), 3047-3059.
10. *Zhu, C.; Takata, M.; Aoki, Y.; Habazaki, H. Nitrogen-doped porous carbon as-mediated by a facile solution combustion synthesis for supercapacitor and oxygen reduction electrocatalyst. Chemical Engineering Journal 2018,350, 278-289.
11. Sheng, N.; Han, C.-g.; *Zhu, C.; Akiyama, T. One-step solution combustion synthesis of K0.5Na0.5NbO3 powders at a large-scale. Ceramics International 2018,44 (15), 18279-18284.
12. Sheng, N.; Han, C.-g.; Lei, Y.; *Zhu, C. Controlled synthesis of Na0.44MnO2 cathode material for sodium ion batteries with superior performance through urea-based solution combustion synthesis. Electrochimica Acta 2018,283, 1560-1567.
13. Cao, J.; *Zhu, C.; Aoki, Y.; Habazaki, H. Starch-Derived Hierarchical Porous Carbon with Controlled Porosity for High Performance Supercapacitors. ACS Sustainable Chemistry & Engineering 2018,6 (6), 7292-7303.
14. *Zhu, C.; Kim, C.; Aoki, Y.; Habazaki, H. Nitrogen-Doped Hierarchical Porous Carbon Architecture Incorporated with Cobalt Nanoparticles and Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces 2017,4 (19), **.
15. *Zhu, C.; Aoki, Y.; Habazaki, H. Co9S8 Nanoparticles Incorporated in Hierarchically Porous 3D Few-Layer Graphene-Like Carbon with S,N-Doping as Superior Electrocatalyst for Oxygen Reduction Reaction. Particle & Particle Systems Characterization 2017,34 (11), **.
16. Han, C.-G.; *Zhu, C.; Sheng, N.; Aoki, Y.; Habazaki, H.; Akiyama, T. A facile one-pot synthesis of FeOx/carbon/graphene composites as superior anode materials for lithium-ion batteries. Electrochimica Acta 2017,235, 88-97.
17. Han, C.-G.; *Zhu, C.; Saito, G.; Sheng, N.; Nomura, T.; *Akiyama, T. Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries. Electrochimica Acta 2017,224, 71-79.
18. Han, C.-G.; *Zhu, C.; Aoki, Y.; Habazaki, H.; Akiyama, T. MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis. Green Energy & Environment 2017,2 (4), 377-386.
19. Han, C.-G.; Sheng, N.; *Zhu, C.; Akiyama, T. Cotton-assisted combustion synthesis of Fe3O4/C composites as excellent anode materials for lithium-ion batteries. Materials Today Energy 2017,5, 187-195.
20. *Zhu, C.; Han, C.-g.; Saito, G.; Akiyama, T. MnO nanocrystals incorporated in a N-containing carbon matrix for Li ion battery anodes. RSC Advances 2016,6 (36), 30445-30453.
21. *Zhu, C.; Han, C.-g.; Saito, G.; Akiyama, T. Facile synthesis of MnO/carbon composites by a single-step nitrate-cellulose combustion synthesis for Li ion battery anode. Journal of Alloys and Compounds 2016,689, 931-937.
22. *Zhu, C.; Akiyama, T. Cotton derived porous carbon via an MgO template method for high performance lithium ion battery anodes. Green Chemistry 2016,18 (7), 2106-2114.
23. Zhu, C.; Sheng, N.; Akiyama, T. MnO nanoparticles embedded in a carbon matrix for a high performance Li ion battery anode. RSC Advances 2015,5 (27), 21066-21073.
24. Zhu, C.; Saito, G.; Akiyama, T. A facile solution combustion synthesis of nanosized amorphous iron oxide incorporated in a carbon matrix for use as a high-performance lithium ion battery anode material. Journal of Alloys and Compounds 2015,633 (0), 424-429.
25. Zhu, C.; Saito, G.; Akiyama, T. Urchin-like hollow-structured cobalt oxides with excellent anode performance for lithium-ion batteries. Journal of Alloys and Compounds 2015,646 (0), 639-646.
26. Zhu, C.; Han, C.-g.; Akiyama, T. Controlled synthesis of LiNi0.5Mn1.5O4 cathode materials with superior electrochemical performance through urea-based solution combustion synthesis. RSC Advances 2015,5 (62), 49831-49837.
27. Zhu, C.; Nobuta, A.; Saito, G.; Nakatsugawa, I.; Akiyama, T. Solution combustion synthesis of LiMn2O4 fine powders for lithium ion batteries. Advanced Powder Technology 2014,25 (1), 342-347.
28. Zhu, C.; Akiyama, T. Designed synthesis of LiNi0.5Mn1.5O4 hollow microspheres with superior electrochemical properties as high-voltage cathode materials for lithium-ion batteries. RSC Advances 2014,4 (20), 10151-10156.
29. Zhu, C.; Akiyama, T. Optimized conditions for glycine-nitrate-based solution combustion synthesis of LiNi0.5Mn1.5O4 as a high-voltage cathode material for lithium-ion batteries. Electrochimica Acta 2014,127 (0), 290-298.
30. Zhu, C.; Saito, G.; Akiyama, T. A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries. Journal of Materials Chemistry A 2013,1 (24), 7077-7082.
31. Zhu, C.; Nobuta, A.; Nakatsugawa, I.; Akiyama, T. Solution combustion synthesis of LaMO3 (M=Fe, Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode. International Journal of Hydrogen Energy 2013,38 (30), 13238-13248.
32. Zhu, C.; Nobuta, A.; Ju, Y.-W.; Ishihara, T.; Akiyama, T. Solution combustion synthesis of Ce0.6Mn0.3Fe0.1O2 for anode of SOFC using LaGaO3-based oxide electrolyte. International Journal of Hydrogen Energy 2013,38 (30), 13419-13426.
33. Zhu, C.; Hosokai, S.; Akiyama, T. Direct synthesis of MgH2 nanofibers from waste Mg. International Journal of Hydrogen Energy 2012,37 (10), 8379-8387.
34. Zhu, C.; Akiyama, T. Zebra-Striped Fibers in Relation to the H2 Sorption Properties for MgH2 Nanofibers Produced by a Vapor–Solid Process. Crystal Growth & Design 2012,12 (8), 4043-4052.
35. Zhu, C.; Sakaguchi, N.; Hosokai, S.; Watanabe, S.; Akiyama, T. In situ transmission electron microscopy observation of the decomposition of MgH2 nanofiber. International Journal of Hydrogen Energy 2011,36 (5), 3600-3605.
36. Zhu, C.; Hosokai, S.; Akiyama, T. Growth Mechanism for the Controlled Synthesis of MgH2/Mg Crystals via a Vapor–Solid Process. Crystal Growth & Design 2011,11 (9), 4166-4174.
37. Zhu, C.; Hosokai, S.; Matsumoto, I.; Akiyama, T. Shape-Controlled Growth of MgH2/Mg Nano/Microstructures Via Hydriding Chemical Vapor Deposition. Crystal Growth & Design 2010,10 (12), 5123-5128.
38. Zhu, C.; Hayashi, H.; Saita, I.; Akiyama, T. Direct synthesis of MgH2 nanofibers at different hydrogen pressures. International Journal of Hydrogen Energy 2009,34 (17), 7283-7290.

其他合作论文:
1.Jeong, S.; Yamaguchi, T.; Okamoto, M.; Zhu, C.; Habazaki, H.; Nagayama, M.; Aoki, Y. Proton Pumping Boosts Energy Conversion in Hydrogen-Permeable Metal-Supported Protonic Fuel Cells. ACS Applied Energy Materials 2020.
2.Yamada, N.; Kowalski, D.; Koyama, A.; Zhu, C.; Aoki, Y.; Habazaki, H. High dispersion and oxygen reduction reaction activity of Co3O4 nanoparticles on platelet-type carbon nanofibers. RSC Advances 2019,9 (7), 3726-3733.
3.Wang, N.; Hinokuma, S.; Ina, T.; Toriumi, H.; Katayama, M.; Inada, Y.; Zhu, C.; Habazaki, H.; Aoki, Y. Incorporation of Bulk Proton Carriers in Cubic Perovskite Manganite Driven by Interplays of Oxygen and Manganese Redox. Chemistry of Materials 2019,31 (20), 8383-8393.
4.Sheng, N.; Zhu, C.; Sakai, H.; Hasegawa, Y.; Akiyama, T.; Nomura, T. Modified preparation of Al2O3@Al-Si microencapsulated phase change material for high-temperature thermal storage with high durability over 3000 cycles. Solar Energy Materials and Solar Cells 2019,200, 109925.
5.Sheng, N.; Zhu, C.; Sakai, H.; Akiyama, T.; Nomura, T. Synthesis of Al-25?wt% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage. Solar Energy Materials and Solar Cells 2019,191, 141-147.
6.Sheng, N.; Dong, K.; Zhu, C.; Akiyama, T.; Nomura, T. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler. Materials Chemistry and Physics 2019,229, 87-91.
7.Sato, Y.; Kobayashi, H.; Kowalski, D.; Koyama, A.; Zhu, C.; Aoki, Y.; Suto, M.; Habazaki, H. Ultra-rapid formation of crystalline anatase TiO2 films highly doped with substrate species by a cathodic deposition method. Electrochemistry Communications 2019,108, 106561.
8.Liu, C.; Xu, Z.; Song, Y.; Lv, P.; Zhao, J.; Liu, C.; Huo, Y.; Xu, B.; Zhu, C.; Rao, Z. A novel shape-stabilization strategy for phase change thermal energy storage. Journal of Materials Chemistry A 2019,7 (14), 8194-8203.
9.Fadillah, L.; Takase, K.; Kobayashi, H.; Turczyniak-Surdacka, S.; Strawski, M.; Kowalski, D.; Zhu, C.; Aoki, Y.; Habazaki, H. The role of tungsten species in the transition of anodic nanopores to nanotubes formed on iron alloyed with tungsten. Electrochimica Acta 2019,309, 274-282.
10.Sheng, N.; Zhu, C.; Saito, G.; Hiraki, T.; Haka, M.; Hasegawa, Y.; Sakai, H.; Akiyama, T.; Nomura, T. Development of a microencapsulated Al–Si phase change material with high-temperature thermal stability and durability over 3000 cycles. Journal of Materials Chemistry A 2018,6 (37), 18143-18153.
11.Shahzad, K.; Kowalski, D.; Zhu, C.; Aoki, Y.; Habazaki, H. Ex Situ Evidence for the Role of a Fluoride-Rich Layer Switching the Growth of Nanopores to Nanotubes: A Missing Piece of the Anodizing Puzzle. ChemElectroChem 2018,5 (4), 610-618.
12.Nakayama, K.; Koyama, A.; Zhu, C.; Aoki, Y.; Habazaki, H. Rapid and Repeatable Self-Healing Superoleophobic Porous Aluminum Surface Using Infiltrated Liquid Healing Agent. Advanced Materials Interfaces 2018,5 (19), **.
13.Kura, C.; Fujimoto, S.; Kunisada, Y.; Kowalski, D.; Tsuji, E.; Zhu, C.; Habazaki, H.; Aoki, Y. Enhanced hydrogen permeability of hafnium nitride nanocrystalline membranes by interfacial hydride conduction. Journal of Materials Chemistry A 2018,6 (6), 2730-2741.
14.Kobayashi, T.; Kuroda, K.; Jeong, S.; Kwon, H.; Zhu, C.; Habazaki, H.; Aoki, Y. Analysis of the Anode Reaction of Solid Oxide Electrolyzer Cells with BaZr0.4Ce0.4Y0.2O3-δ Electrolytes and Sm0.5Sr0.5CoO3-δ Anodes. Journal of The Electrochemical Society 2018,165 (5), F342-F349.
15.Kasuga, A.; Koyama, A.; Nakayama, K.; Kowalski, D.; Zhu, C.; Aoki, Y.; Habazaki, H. Fabrication of Superoleophobic Surface on Stainless Steel by Hierarchical Surface Roughening and Organic Coating. ISIJ International 2018,advpub.
16.Jeong, S.; Kobayashi, T.; Kuroda, K.; Kwon, H.; Zhu, C.; Habazaki, H.; Aoki, Y. Evaluation of thin film fuel cells with Zr-rich BaZrxCe0.8−xY0.2O3−δ electrolytes (x ≥ 0.4) fabricated by a single-step reactive sintering method. RSC Advances 2018,8 (46), 26309-26317.
17.Cao, J.-H.; Sato, Y.; Kowalski, D.; Zhu, C.; Aoki, Y.; Cheng, Y.; Habazaki, H. Highly increased breakdown potential of anodic films on aluminum using a sealed porous layer. Journal of Solid State Electrochemistry 2018.
18.Aoki, Y.; Yamaguchi, T.; Kobayashi, S.; Kowalski, D.; Zhu, C.; Habazaki, H. High-Efficiency Direct Ammonia Fuel Cells Based on BaZr0.1Ce0.7Y0.2O3−δ/Pd Oxide-Metal Junctions. Global Challenges 2018,2 (1), **-n/a.
19.Ohyama, J.; Zhu, C.; Saito, G.; Haga, M.; Nomura, T.; Sakaguchi, N.; Akiyama, T. Combustion synthesis of YAG:Ce phosphors via the thermite reaction of aluminum. Journal of Rare Earths 2017.
20.Nomura, T.; Sheng, N.; Zhu, C.; Saito, G.; Hanzaki, D.; Hiraki, T.; Akiyama, T. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Applied Energy 2017,188, 9-18.
21.Nakayama, K.; Hiraga, T.; Zhu, C.; Tsuji, E.; Aoki, Y.; Habazaki, H. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes. Applied Surface Science 2017,423, 968-976.
22.Kura, C.; Kunisada, Y.; Tsuji, E.; Zhu, C.; Habazaki, H.; Nagata, S.; Müller, M. P.; De Souza, R. A.; Aoki, Y. Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity. Nature Energy 2017,2 (10), 786-794.
23.Habazaki, H.; Kobayashi, K.; Tsuji, E.; Zhu, C.; Aoki, Y.; Nagata, S. Highly increased capacitance and thermal stability of anodic oxide films on oxygen-incorporated Zr-Ti alloy. Journal of Solid State Electrochemistry 2017, 1-10.
24.Aoki, Y.; Yamaguchi, T.; Kobayashi, S.; Zhu, C.; Habazaki, H. High Efficiency Direct Ammonia Type Fuel Cells based on BaZrxCe0.8-XY0.2O3/Pd Oxide-Metal Junctions. ECS Transactions 2017,78 (1), 1511-1515.
25.Aoki, Y.; Yamaguchi, T.; Kobayashi, S.; Zhu, C.; Habazaki, H. High Efficiency Hydrogen Membrane Fuel Cells with BaCe0.8Y0.2O3-δ Electrolyte Thin Films and Pd1-xAgx Solid Anodes. Journal of The Electrochemical Society 2017,164 (6), F577-F581.
26.Aoki, Y.; Kuroda, K.; Hinokuma, S.; Kura, C.; Zhu, C.; Tsuji, E.; Nakao, A.; Wakeshima, M.; Hinatsu, Y.; Habazaki, H. Low-Temperature Oxygen Storage of CrIV–CrV Mixed-Valence YCr1–xPxO4−δ Driven by Local Condensation around Oxygen-Deficient Orthochromite. Journal of the American Chemical Society 2017,139 (32), 11197-11206.
27.Wang, T.; Wang, S.; Luo, R.; Zhu, C.; Akiyama, T.; Zhang, Z. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Applied Energy 2016,171, 113-119.
28.Shahzad, K.; Zhu, C.; Tsuji, E.; Aoki, Y.; Nagata, S.; Habazaki, H. Growth of Barrier Type Anodic Film on Magnesium in Ethylene Glycol-Water Mixed Electrolytes Containing Fluoride and Phosphate. Materials Transactions 2016,57 (9), 1552-1559.
29.Saito, G.; Zhu, C.; Han, C.-G.; Sakaguchi, N.; Akiyama, T. Solution combustion synthesis of porous Sn–C composite as anode material for lithium ion batteries. Advanced Powder Technology 2016,27 (4), 1730-1737.
30.Nomura, T.; Zhu, C.; Nan, S.; Tabuchi, K.; Wang, S.; Akiyama, T. High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network. Applied Energy 2016,179, 1-6.
31.Han, C.-G.; Zhu, C.; Saito, G.; Akiyama, T. Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochimica Acta 2016,209, 225-234.
32.Fukahori, R.; Nomura, T.; Zhu, C.; Sheng, N.; Okinaka, N.; Akiyama, T. Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Applied Energy 2016,163, 1-8.
33.Fukahori, R.; Nomura, T.; Zhu, C.; Sheng, N.; Okinaka, N.; Akiyama, T. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Applied Energy 2016,170, 324-328.
34.Saito, G.; Nakasugi, Y.; Sakaguchi, N.; Zhu, C.; Akiyama, T. Glycine–nitrate-based solution-combustion synthesis of SrTiO3. Journal of Alloys and Compounds 2015,652, 496-502.
35.Nomura, T.; Zhu, C.; Sheng, N.; Tabuchi, K.; Sagara, A.; Akiyama, T. Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2. Solar Energy Materials and Solar Cells 2015,143, 424-429.
36.Nomura, T.; Zhu, C.; Sheng, N.; Saito, G.; Akiyama, T. Microencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage. Sci. Rep. 2015,5.
37.Nomura, T.; Zhu, C.; Sheng, N.; Murai, R.; Akiyama, T. Solution combustion synthesis of Brownmillerite-type Ca2AlMnO5 as an oxygen storage material. Journal of Alloys and Compounds 2015,646 (0), 900-905.
38.Nomura, T.; Zhu, C.; Sagara, A.; Okinaka, N.; Akiyama, T. Estimation of thermal endurance of multicomponent sugar alcohols asphase change materials. Applied Thermal Engineering 2015,75 (0), 481-486.
39.Nomura, T.; Tabuchi, K.; Zhu, C.; Sheng, N.; Wang, S.; Akiyama, T. High thermal conductivity phase change composite with percolating carbon fiber network. Applied Energy 2015,154 (0), 678-685.
40.Luo, R.; Wang, S.; Wang, T.; Zhu, C.; Nomura, T.; Akiyama, T. Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation. Energy and Buildings 2015,108, 373-380.
41.Han, C.-G.; Zhu, C.; Saito, G.; Akiyama, T. Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries. Advanced Powder Technology 2015,26 (2), 665-671.
42.Han, C.-G.; Zhu, C.; Saito, G.; Akiyama, T. Improved electrochemical properties of LiMn2O4 with the Bi and La co-doping for lithium-ion batteries. RSC Advances 2015,5 (89), 73315-73322.
43.Deguchi, M.; Yasuda, N.; Zhu, C.; Okinaka, N.; Akiyama, T. Combustion synthesis of TiFe by utilizing magnesiothermic reduction. Journal of Alloys and Compounds 2015,622 (0), 102-107.
44.Saito, G.; Zhu, C.; Akiyama, T. Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique. Advanced Powder Technology 2014,25 (2), 728-732.

科研创新
1. 朱春宇,程英亮,盛楠,曹金晖。一种多孔纳米碳的制备方法。专利号 ZL 5.7
2. 朱春宇,盛楠,饶中浩。 一种具有多级孔构造的氮掺杂多孔碳材料及其制备方法与应用。申请号 4.X
3. 朱春宇,饶中浩,朱瑞杰,盛楠。一种具有仿生结构的多孔金属电极的制备方法。 申请号 0.0
4.朱春宇,盛楠,饶中浩,卢家辉。一种金属相变微胶囊储热颗粒的制备方法与应用。申请号 7.4
5. 朱春宇,盛楠,郭云琪,饶中浩,张龙杰。一种陶瓷壳包覆金属芯材的相变储热大胶囊及其制备方法。申请号8.8

指导学生情况
本课题组现有在读博士1名,硕士生9人。

我的团队
本课题组经费充足,目前已经建成200平米的实验室,设备先进,实验室独立拥有TG-DSC同步热分析仪器、多通道电化学工作站、Pine旋转圆盘电极等测试仪器,以及各类材料制备用的高温管式炉、马弗炉、等静压仪等设备。
团队现有在读硕士与博士生研究生10名。欢迎报考本团队的博士与硕士研究生!!!
联系方式: zcyls@cumt.edu.cn QQ:



相关话题/中国矿业大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 中国矿业大学导师教师师资介绍简介-郑丽娜
    姓名郑丽娜性别女出生年月1986年10月籍贯山东夏津县民族汉族政治面貌中共党员最后学历博士研究生最后学位技术职称教授导师类别博、硕导行政职务Emailzhenglina@cumt.edu.cn工作单位中国矿业大学安全工程学院邮政编码221116通讯地址江苏省徐州市大学路1号单位电话**个人主页个人简 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-谢方伟
    姓名谢方伟性别男出生年月1983年2月籍贯安徽萧县民族汉族政治面貌中共党员最后学历博士研究生最后学位工学博士技术职称教授导师类别博、硕导行政职务无Emailxiefangwei@163.com工作单位机电工程学院邮政编码221116通讯地址江苏省徐州市大学路1号单位电话**个人主页http://cm ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-何新建
    姓名何新建性别男出生年月1982年10月籍贯河南淮滨县民族汉族政治面貌中共党员最后学历博士研究生最后学位哲学博士技术职称教授导师类别博、硕导行政职务Emailxinjian.he@cumt.edu.cn工作单位安全工程学院邮政编码通讯地址单位电话个人主页个人简介何新建,1982年10月生,中国矿业大 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-黄再兴
    姓名黄再兴性别男出生年月1981年5月籍贯福建龙海市民族汉族政治面貌群众最后学历博士研究生毕业最后学位技术职称教授导师类别博、硕导行政职务无Emailzaixing.huang@cumt.edu.cn工作单位中国矿业大学邮政编码221116通讯地址江苏省徐州市大学路1号中国矿业大学化工学院单位电话* ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-马丹
    姓名马丹性别男出生年月1988年4月籍贯四川天全县民族汉族政治面貌中共党员最后学历博士研究生最后学位工学博士技术职称教授导师类别博、硕导行政职务Emaildan.ma@cumt.edu.cn工作单位中国矿业大学矿业学院邮政编码221116通讯地址江苏省徐州市大学路1号单位电话**个人主页个人简介马丹 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-牛华伟
    姓名牛华伟性别男出生年月1980年11月籍贯山东枣庄市民族汉族政治面貌中共党员最后学历博士研究生最后学位理学博士技术职称教授导师类别博、硕导行政职务无Emailniuhuawei@cumt.edu.cn工作单位中国矿业大学经济管理学院邮政编码221116通讯地址江苏省徐州市大学路1号中国矿业大学南湖 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-杨海燕
    姓名杨海燕性别男出生年月1980年12月籍贯阜阳民族汉族政治面貌中共党员最后学历博士研究生最后学位工学博士技术职称教授导师类别博、硕导行政职务无Emailyhyecit@163.com工作单位资源与地球科学学院邮政编码221116通讯地址江苏徐州大学路1号中国矿业大学南湖校区单位电话个人主页个人简介 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-李晓昭
    姓名李晓昭性别男出生年月1968年4月籍贯河北饶阳县民族汉族政治面貌中共党员最后学历博士研究生毕业最后学位工学博士技术职称教授导师类别博、硕导行政职务主任Emaillixz@cumt.edu.cn工作单位深部岩土力学与地下工程国家重点实验室邮政编码221116通讯地址徐州市大学路单位电话**个人主页 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-孟建民
    姓名孟建民性别男出生年月1958年2月籍贯徐州市民族汉族政治面貌中共党员最后学历博士研究生毕业最后学位技术职称教授导师类别博导行政职务主任Email工作单位深圳大学本原设计研究中心邮政编码通讯地址深圳市福田区振华路8号设计大厦22楼单位电话个人主页个人简介孟建民,中国工程院院士,全国建筑设计大师,教 ...
    本站小编 Free考研考试 2021-03-28
  • 中国矿业大学导师教师师资介绍简介-张克非
    姓名张克非性别男出生年月1964年4月籍贯泰来民族汉族政治面貌群众最后学历博士研究生最后学位工学博士技术职称教授导师类别博、硕导行政职务无Emailprofkzhang@gmail.com工作单位中国矿业大学环境与测绘学院邮政编码221116通讯地址江苏省徐州市泉山区大学路1号中国矿业大学单位电话+ ...
    本站小编 Free考研考试 2021-03-28