删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

江苏大学物理与电子工程学院导师教师师资介绍简介-谢月娥

本站小编 Free考研考试/2021-03-13

姓  名: 谢月娥
职务职称: 教授、博士生导师
研究方向: 计算物理、工程热物理、低维纳米结构的输运、微纳能源器件
研究生招生专业: 凝聚态物理、计算物理
联系电话
E-mail: yueex@ujs.edu.cn
通信地址: 江苏省镇江市学府路301号江苏大学理学院(212013)



● 1996/09-2000/06,湖南师范大学物理系,大学/本科.
● 2000/07-2003/08,湖南科技学院物理系,助教.
● 2003/09-2006/07,湘潭大学物理学院,硕士.
● 2008/09-2011/06,湘潭大学物理学院,博士.
● 2003/09-2015/11,湘潭大学物理学院,助教/讲师/副教授
● 2015/12—2018/08,湘潭大学物理学院,教授.
● 2018/09至今 江苏大学理学院,教授.
● 2012/09—2013/12,美国伦斯勒理工学院,访问****.
● 2016/11—2017/11,美国罗格斯大学,访问****.


● Chinese Physics B审稿人
● 2012年至今美国物理学会会员


● 数理方程(博士)


教材
● 《大学物理学》,北京邮电大学出版社,2011年,参编
● 《大学物理学》,高等教育出版社,2019年,参编


在研项目
● 湖南省自然科学基金项目:二维薄膜异质结的热传导(2018JJ2377),主持
完成项目
● 国家自然科学基金项目:新型碳基纳米薄膜的热输运及其基底效应研究(**),主持
● 国家自然科学基金项目:石墨纳米回路的热输运(**),主持
● 国家自然科学基金项目:低维纳米结构的热输运(),主持
● 国家自然科学基金项目:折叠对石墨烯条带的电子输运的影响和调控(),参与


1. Symmorphic intersecting nodal rings in semiconducting layers, Phys. Rev. Lett. 120,106403(2018) (IF: 8.462) (SCI, 1区)
2. A Class of topological nodal rings and its realization in carbon networks, Phys. Rev. B: Rap. Comm. 97, 121108(2018) (IF: 3.718)
3. Nexus networks in carbon honeycombs, Phys. Rev. Mater. 2, 42051(2018) (IF: 3.836) (SCI, 1区)
4. Double Kagome bands in a two-dimensional phosphorus carbide P2C3, J. Phys. Chem. Lett. 9, 2751-2756(2018)(IF: 9.353) (SCI, 1区)
5. Ferromagnetism and Wigner crystallization in kagome graphene and related structures, Phys. Rev. B , 98, 035135(2018)
6. Nodal-chain network intersecting nodal rings and triple points coexisting in nonsymmorphic Ba3Si4, Phys. Chem. Chem. Phys. , 20, 21177 (2018)
7. Spindle nodal chain in three-dimensionalboron, Phys. Chem. Chem. Phys. 20, 23500-23506(2018)
8. Predicting two-dimensional carbon phosphide compounds: C2P4 by the global optimization method, Comp. Mater. Sci. 144, 70(2018)
9. Three-dimensional Pentagon Carbon with a genesis of emergent fermions, Nature Comm. 8, 15641 (2017) (IF: 12.1) (SCI, 1区)
10. Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet, J. Phys. Chem. Lett. 8, 1707(2017)(IF: 9.353) (SCI, 1区)
11. Tunable Type-I and type-II Dirac fermions in graphene with nitrogen-molecule line defects , J. Phys. Chem. C 12122, 12476(2017) (IF: 4.536)
12. Semi-Dirac Semimetal in Silicene Oxide, Phys. Chem. Chem. Phys. 19, 3820(2017) (IF: 4.123)
13. Thermal transport in twisted few-layer graphene, Chin. Phys. B 26, 116503(2017)
14. Towards three-dimensional Weyl-surface semimetals in graphene networks, Nanoscale 8 (13), 7232-7239 (2016) (IF: 7.4) (被选为 Hot article) (SCI, 1区)
15. Electron and phonon properties and gas storage in carbon honeycomb, Nanoscale 8, 12863 (2016) (IF: 7.4) (SCI, 1区)
16. Coexistence of flat bands and Dirac bands in a carbon-Kagome-lattice family, Carbon 99, 65 (2016) (IF:6.4) (SCI, 1区)
17. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons, Scientific reports (Nature子刊) 6, 21639 (2016)
18. Phonon transport in single-layer boron nanoribbons, Nanotechnology 27, 445703(2016) (IF:3.573) (SCI, 1区)
19. Transition of thermal rectification in silicon nanocones, Applied Thermal Engineering 102, 1075(2016)
20. New record of high ZT found in hybrid transition-metal-dichalcogenides, J Appl. Phys. 120, 235109(2016)
21. Nanostructured Carbon Allotropes with Weyl-like Loops and Points, Nano Lett. 15 (10), 6974 (2015) (IF: 12.7) (SCI, 1区)
22. Thermal transport in MoS2/Graphene hybrid nanosheets, Nanotechnology 26, 375402(2015)
23. Geometry, Stability and thermal transport of hydrogenated graphene nanoquilts, Solid State Comm. 213-214, 31(2015)
24. A low-surface energy carbon allotrope: the case for bcc-C6, Phys. Chem. Chem. Phys. 17, 14083(2015)
25. Versatile electronic properties and exotic edge states of single-layer tetragonal silicon carbides, Phys. Chem. Chem. Phys. 17, 11211(2015)
26. Carbon Kagome Lattice and Orbital-Frustration-Induced Metal-Insulator Transition for Optoelectronics, Phys. Rev. Lett. 113, 085501 (2014) (IF: 8.5) (被选为Editors' suggestion) (SCI, 1区)
27. R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons, J. Mater. Chem. A 1,5341 (2013) (IF: 8.9)(被引用45次, 被NatureChina作为亮点专题报道) (SCI, 1区)
28. Atomic structure and electronic properties of folded graphene nanoribbons: A first-principles study, J Appl. Phys. 113,173506(2013)
29. Spin-polarized transport in zigzag graphene nanoribbons adsorbing nonmagnetic atomic chain, Eur. Phys. J. B 86, 34(2013)
30. Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain, Chin. Phys. B 22( 8 ) 087303(2013)
31. Thermal transport of graphene nanoribbons embedding linear defects, Acta Phys. Sin. 62, 068102(2013)
32. Electron transport in folded graphene junctions. Phys. Rev. B 86, 195426 (2012) (IF: 3.7)
33. Thermal transport in graphyne nanoribbons, Phys. Rev. B 85, 235436 (2012) (IF: 3.7)
34. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev. B 86, 045425 (2012) (IF: 3.7)
35. Spin-polarized transport in graphene nanoribbon superlattices, Chin. Phys. B 21, 107202(2012)
36. The modification of central B/N atom chain on electron transport of graphene nanoribbons, J Appl. Phys. 112, 113713 (2012)
37. The electronic properties of disordered bilayer hexagonal boron nitride quantum films, Acta Phys. Sin., 61, 178101 (2012)
38. Continuously tunable thermal conductance in arched Graphene nanoribbons, Appl. Phys. Exp. 5, 125103(2012)
39. Transport through T-shaped quantum wires under potential modulation: Lattice Green’s function approach. Phys. Rev. B 71, 245335 (2005) (IF: 3.7)
40. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons, J. Phys. D: Appl. Phys. 44, 215403 (2011)
41. Thermal conductance modulator based on folded graphene nanoribbons, Appl. Phys. Lett. 99, **(2011)
42. Effect of triangle vacancy on thermal transport in boron nitride nanoribbons, Solid State Communications 151, 460 (2011)
43. Resonant transmission in three-terminal triangle graphene nanojunctions with zigzag edges, Solid State Comm. 150, 675 (2010)
44. Ballistic thermal rectification in asymmetric three-terminal Graphene nanojunctions. Phys. Rev. B 82, 245403 (2010) (IF: 3.7)
45. Resonant splitting of phonon transport in periodic T-shaped graphene nanoribbons, Europhysics Lett. 91, 46006 (2010)
46. Thermal transport in hexagonal boron nitride nanoribbons, Nanotechnology 21, 245701 (2010) (IF: 3.8)
47. Electronic properties of disordered bilayer graphene, Solid State Comm. 150, 2366(2010)
48. Spin polarization in a double bend quantum wire with Rashba spin-orbit coupling, Physica B 405, 3581(2010)
49. Strain effect on transport properties of hexagonal Boron Nitride nanoribbons, Chin. Phys. B 19(8), 086105 (2010)
50. Electronic transport properties of metallic grapheme nanoribbons with two vacancies, Solid State Comm. 150, 675 (2010)
51. Electron transport of folded graphene nanoribbons, J. Appl. Phys. 106, 103714 (2009) (IF: 2.1) (被引用32次, 被NatureChina作为亮点专题报道)
52. The effect of corner form on electron transport of L-shaped graphene nanoribbons, Physica B 404, 1771 (2009)
53. Asymmetric transport in asymmetric T-shaped graphene nanoribbons, Appl. Phys. Lett. 93, 092104 (2008) (IF: 3.4)
54. Electron transport of L-shaped graphene nanoribbons, J. Appl. Phys. 103, 063711 (2008) (IF: 2.1)
55. Resonant Transport and quantum bound states in Z-shaped graphene nanoribbons, Phys. Lett. A 372, 5928 (2008)
56. Resonant transmission via magnetically bound states in periodic quantum structures. Phys. Rev. B 76, 115439 (2007) (IF: 3.7)
57. Magnetotransport in a dual waveguide coupled by a finite barrier: Energy filter and directional coupler, Chin. Phys. B 16, 3087 (2007)
58. (n? 2)-fold resonant splitting in open periodic quantum structures. Phys. Rev. B 74, 035310 (2006) (IF: 3.7)
59. Transmission resonance via quantum bound states in confined arrays of antidots, Euro. Phys. J. B 49, 333 (2006)
60. The evolution of bound states in quantum wires under potential modulation, Physica B 373(2), 253 (2006)
61. Nonideal effects in quantum field-effect directional coupler, Chin. Phys. B 15, 2415 (2006)
62. Transport through T-shaped quantum wires under potential modulation: Lattice Green's function approach, Phys. Rev. B 71, 245335 (2005)



● 2012年度湖南省自然科学奖一等奖(排名第五)
● 2014年湖南省青年骨干教师
● 2010年湖南省自然科学优秀论文一等奖(排名第二)
● 2017年湖南省大学物理竞赛优秀指导老师
● 2017年湘潭大学“韶峰****”



相关话题/江苏 大学物理