孙志忠
教授
数学学院
计算数学系
电话:
**
邮箱:
zzsun@seu.edu.cn
地址:
东南大学九龙湖校区图书馆北楼
邮编:
211189
基本信息
研究成果
项目与荣誉
社会兼职
孙志忠,男,1963年3月生。1990年至今在东南大学数学学院任教。 现为教授(2级),博士生导师。江苏省高校“青蓝工程”中青年学术带头人。1997年1月起至2013年11月担任计算数学教研室主任。1998年4月至2014年4月任东南大学数模竞赛总教练。1998年起担任全校工科硕士研究生学位课程《数值分析》课程负责人。
1990年至今在东南大学数学学院任教。1990年10月任讲师。1994年12月任副教授。1998年4月任教授。1995年5月被批准为硕士生导师。2004年7月被批准为博士生导师。主讲《偏微分方程数值解》、《计算方法》、《非线性发展法方程的数值方法》、《数值分析》等课程。专业为计算数学与科学工程计算,研究方向为偏微分方程数值解法中的差分方法理论。主持完成国家自然科学基金项目4项和江苏省自然科学基金项目1项。 参与完成国家基金项目2项。正在主持国家自然科学基金项目一项。在《SIAM J. Numer. Anal.》、《SIAM Journal on Scientific Comput.》,《Numer. Math.》、《Math. Comput.》、《J. Comput. Physics》、《J. Scientific Comput.》,《Appl. Numer. Math.》、《Numer. Methods Partial Differential Eqs》、《J. Comput. Appl. Math.》、《J. Comput. Math.》、《Sci. China Math.》、《计算数学》、《应用数学学报》、《高校计算数学学报》等国内外学术刊物上发表研究论文100余篇。出版专著4部,教材6部。1997年9月开始指导研究生。已指导毕业硕士研究生29名,指导毕业博士研究生10名。
1984年在南京大学数学系获得理学学士学位。1987年在南京大学数学系获得理学硕士学位。 1990年在中国科学院计算中心(现为计算数学与科学工程计算研究所)获得理学博士学位。
(I) 教材和专著+(II) 学术论文
(I) 教材和专著
23.孙志忠,高广花,分数阶微分方程的差分方法(第二版),科学出版社, ISBN978-7-03-066978-0,2021.01
22.Zhi-zhong Sun,Gunghua Sun,Fractional Differential Equations. Finite Difference Methods, Science Press, Beijing & de Gruyter, Berlin/Boston, XV+380 pp., 2020.08, ISBN 978-3-11-061517-3
21.Xuan Zhao, Zhi-Zhong Sun, Time-fractional derivatives.Handbook of fractional calculus with applications. Vol. 3,23–48,De Gruyter, Berlin,2019.x+349 pp. ISBN:
978-3-11-057106-6
20. 孙志忠,非线性发展方程的差分方法,科学出版社,2018年8月,
ISBN978-7-03-058087-0
19. 曹婉容,杜睿, 吴宏伟,孙志忠, 数值分析试题解析,东南大学出版社,
2017年8月(第一版), ISBN 978-7-5641-7348-7
18. 孙志忠,高广花,分数阶微分方程的差分方法,科学出版社,2015年8月,
ISBN978-7-03-045472-0
17.孙志忠,吴宏伟,曹婉容, 数值分析全真试题解析(2009-2014),
东南大学出版社,2014年7月(第一版),ISBN 978-7-5641-5057-0
16. You-lan Zhu, Xiaonan Wu, I-Liang Chern and Zhi-zhong Sun,Derivative Securities and Difference Methods (Second edition, Springer Finance),
ISBN 978-1-4614-7305-3, 2013
15 孙志忠,吴宏伟,曹婉容, 数值分析全真试题解析(2007-2012),东南大学出版 社,2012年6月(第一版),ISBN 978-7-5641-3337-5
14. 孙志忠,偏微分方程数值解法(第二版),科学出版社,2012年3月,38万 字,ISBN 978-7-03-033770-2,科学出版社普通高等教育“十二五”规划教材
13.孙志忠,计算方法与实习学习指导与习题解析(第2版),东南大学出版社,2011年7 月, ISBN 978-7-5641-2903-3
12.孙志忠,吴宏伟,袁慰平,闻震初, 计算方法与实习(第5版),东南大学出版 社,2011 年7月,ISBN 978-7-5641- 2895-1
11. 孙志忠,袁慰平,闻震初。数值分析(第3版),东南大学出版社,
2011年2月,ISBN978-7-5641-2577-6
10. 孙志忠,吴宏伟,曹婉容, 数值分析全真试题解析(第二版),东南大学出版社,
2010年5月,ISBN 978-7-5641-2152-5
9. Zhi-zhong Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations
(偏微分方程数值解中的降阶法及其应用), Science Press, 2009,
ISBN978-7-03-024546-5
8. 孙志忠,吴宏伟,袁慰平,闻震初, 计算方法与实习( 第4版),东南大学出版社, 2005年12月, ISBN978-7-5641-0199-2
7 .孙志忠,计算方法典型例题分析(第2版),科学出版社,2005年8月,
ISBN 978-7-03-015640-2
6.孙志忠,计算方法与实习学习指导与习题解析,东南大学出版社,2005年1月,
ISBN 7-81089-831-0
5.孙志忠,偏微分方程数值解法,科学出版社,2005年1月,
ISBN 978-7-03-014403-4
4.孙志忠,数值分析全真试题解析,东南大学出版社,2004年7月22万字,
ISBN 978-7-8108-9629-0
3.孙志忠,袁慰平,闻震初,数值分析(第2版),东南大学出版社,2002年1月,
ISBN 7-81050-931-4
2. 孙志忠. 计算方法典型例题分析,科学出版社,2001年3月, ISBN7-03-008991-X
1. 袁慰平,孙志忠,吴宏伟,闻震初, 计算方法与实习(第3版) ,
东南大学出版社,2000年6月,ISBN 7-81050-828-8
(II) 学术期刊论文
2021
149.Xuping Wang,Qifeng Zhang,Zhi-zhong Sun,The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation,Advances in Computational Mathematics,accepted on 18 Jan 2021
148.Rui-lian Du, Zhi-zhong Sun,A fast temporal second-order compact ADI scheme for time fractional mixed diffusion and wave equation,East Asian Journal on Applied Mathematics,accepted on 9Jan 2021
147. Rui-lian Du, Zhi-zhong Sun,Hong Wang,Temporal second-order finite difference schemesfor variable-order time-fractional wave equations, SINUM, 2021
(accepted in Nov.2020)
146. Xuping Wang,Zhi-zhong Sun,A second order convergent difference scheme
for the initial-boundary value problem of Korteweg-de Vires equation,Numerical
Methods for Partial Differential Equations,2021, DOI: 10.1002/num.22646
145. Rui-lian Du, Zhi-zhong Sun, Temporal second-order difference methods for solving multi-term time fractional mixeddiffusion and wave equations,Numerical
Algorithms,2021,DOI: 10.1007/s11075-020-01037-x
144.Qifeng Zhang , Yifan Qin , Xuping Wang , Zhi-zhong Sun,The study of exact and numerical solutions of the generalized viscous Burgers’ equation, Applied Mathematics Letters,
2021, 112:106719
143. Hong Sun, Zhi-zhong Sun, A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation, Numerical Algorithms,
2021,86(2), 761-797
2020
142. Qifeng Zhang, Xuping Wang, Zhi-zhong Sun, The pointwise estimates of a conservative difference scheme for the Burgers' equation, Numerical Methods
for Partial Differential Equations, 2020, 36: 1611–1628
141. Jin-ye Shen,Changpin Li,Zhi-zhong Sun,An H2N2 interpolation for Caputo derivative with order in (1, 2) and its application to time fractional wave equation in more
than one space dimension,Journal of Scientific Computing,2020, 83:38
140. Ruilian Du, Anatoly A. Alikhanov, Zhi-ZhongSun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Computers & Mathematics with Applications, 2020,79( 1015) : 2952-2972
139. Z.-Z. Sun, C. Ji and R. Du, A new analytical technique of the L-typedifference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Applied Mathematics Letters,2020, 102: 106115
138. Jin-ye Shen,Xu-ping Wang,Zhi-zhong Sun,The conservation and convergence of two finite difference schemes for Korteweg-de Vries equations with the initial and boundary value conditions,Numer. Math. Theor. Meth. Appl.,2020,13(1):253-280
137.Jin-Ye Shen,Zhi-Zhong Sun,Two-level linearized and local uncoupled difference schemes for the two-component evolutionary Korteweg-de Vries system,Numerical Methods for Partial Differential Equations,2020,36: 5–28.
2019
136.Cui-cui Ji,Weizhong Dai,Zhi-zhong Sun,Numerical schemes for solving the time-fractional dual-phase-lagging heat conduction model in a double-layered nanoscale thin film,Journal of Scientific Computing ,2019, 81: 1767–1800
135. Xuping Wang, Zhizhong Sun,A Compact Difference Scheme for Multi-Point Boundary Value Problems of Heat Equations, Communications on Applied Mathematics and Computation,
2019,1(4):545–563
134. Jinye Shen, Zhi-zhong Sun, Wanrong Cao,A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation,Applied Mathematics and Computation,2019,361:752–765
133.Hong Sun, Zhi-zhong Sun and Rui Du,A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation,Numer. Math. Theor. Meth. Appl. ,2019,12:1168-1190.
132. Hong Sun, Xuan Zhao and Zhi-zhong Sun, The temporal second order difference schemes based onthe interpolation approximationfor the time multi-term fractional wave equation, J Sci Comput,2019, 78:467–498
2018
131. Jin-ye Shen, Zhi-zhong Sun, Rui Du, Fast finite difference schemes for the time-fractional diffusion equation with a weak singularityat the initial time, Asian Journal of Applied Mathematics,East Asian Journal on Applied Mathematics,2018, 8(4): 834-858
130.Zhi-Zhong Sun, Jiwei Zhang, Zhimin Zhang, The optimal error estimate for the numerical computation of the time fractional Schrodinger equation on an unbounded domain, Asian Journal on Applied Mathematics, 2018, 8(4): 634-655
129. Cui-cui Ji,Weizhong Dai,Zhi-zhong Sun,Numerical method for molving the time-fractional dual-phase-lagging heat conduction equation with the temperature-tump boundary condition,J Sci Comput,2018,75: 1307–1336
128. Cui-cui Ji; Rui Du; Zhizhong Sun,Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives,International Journal of Computer Mathematics, 2018,95(1): 255-277
127. Yun Zhu,Zhi-zhong Sun,A high order difference scheme for the space and time fractional Bloch-Torrey equation,Comput. Methods Appl. Math., 2018, 18(1): 147-164
2017
126. Y. Yan, Z. Z. Sun, J. W. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order Scheme. Communications in Computational Physics, 2017, 22(4), 1028-1048.
125. Cui-cui Ji, Zhi-zhong Sun, An unconditionally stable and high-order convergent difference scheme for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, NumericalMathematics: Theory, Methods and Applications. 2017,11(3),597-614
124.Guanghua Gao, Anatoly A. Alikhanov, Zhi-zhong Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations,Journal of Scientific Computing,2017,73(1), 93-121
123. Zhaopeng Hao, G. Lin, Zhi-Zhong Sun,A high-order difference scheme for the fractional sub-diffusion equation,International Journal of Computer Mathematics, 2017,90(2): 405-426
122.Guang-hua Gao, Zhi-zhong Sun, Two difference schemes for solving the one-dimensionaltime distributed-order fractional wave equations,Numer Algor, 2017,74: 675-697
121. Hong Sun, Zhi-zhong Sun, Weizhong DaiA second-order finite difference scheme for solving the dual-phase-lagging equation in a double-layered nanoscale thin film, Numer Methods Partial Differential Eq,2017,33: 142–173
120. Zhao-peng Hao, Zhi-zhong Sun,A linearized high-order difference schemefor the fractional Ginzburg–Landau equation,Numer Methods Partial Differential Eq,2017, 33: 105–124
2016?
119. Guang-hua Gao,Zhi-zhong Sun,Two alternating direction implicit difference schemes
for solving the two-dimensional time distributed-order wave equations,J Sci Comput, 69(2):
506-531
118.Du, Rui; Hao, Zhao-peng; Sun, Zhi-zhong, Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. East Asian J. Appl. Math., 6(2): 131–151.
117.Sun, Hong; Sun, Zhi-Zhong; Gao, Guang-Hua, Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differential Equations 32?(2016),?no. 3, 970–1001.
116. Sun, Hong; Sun, Zhi-zhong; Gao, Guang-hua, Some high order difference schemes for the space and time fractional Bloch-Torrey equations. Appl. Math. Comput. 281?(2016),?356–380.
115. Ren, Jincheng; Sun, Zhi-zhong; Dai, Weizhong, New approximations for solving the Caputo-type fractional partial differential equations. Appl. Math. Model. 40?(2016),?no. 4, 2625–2636.
114.Gao, Guang-hua; Sun, Zhi-zhong, Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66?(2016),?no. 3, 1281–1312.
113. Ji, Cui-cui; Sun, Zhi-zhong; Hao, Zhao-peng, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci. Comput. 66?(2016),?no. 3,1148–1174.
112. Gao, Guang-hua; Sun, Zhi-zhong, Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differential Equations 32?(2016),?no. 2, 591–615.
111. Hao, Zhaopeng; Fan, Kai; Cao, Wanrong; Sun, Zhizhong, A finite difference scheme for semilinear space-fractional diffusion equations with time delay. Appl. Math. Comput. 275?(2016),?238–254.
2015
110.Cui, Jin; Sun, Zhi Zhong; Wu, Hong Wei, A highly accurate and conservative difference scheme for the solution of a nonlinear Schr?dinger equation. (Chinese) Numer. Math. J. Chinese Univ. 37?(2015),?no. 1, 31–52.
109. Cao, HaiYan; Sun, ZhiZhong, Two finite difference schemes for the phase field crystal equation. Sci. China Math. 58?(2015),?no. 11, 2435–2454.
108. Du, Rui; Sun, Zhi-zhong; Gao, Guang-hua, A second-order linearized three-level backward Euler scheme for a class of nonlinear expitaxial growth model. Int. J. Comput. Math. 92?(2015),?no. 11, 2290–2309.
107.Sun, Hong; Du, Rui; Dai, Weizhong; Sun, Zhi-zhong, A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Numer. Methods Partial Differential Equations 31?(2015),?no. 6, 1742–1768.
106.Ji, Cui-cui; Sun, Zhi-zhong The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269?(2015),?775–791.
105.Ren, Jincheng; Sun, Zhi-Zhong, Efficient numerical solution of the multi-term time fractional diffusion-wave equation. East Asian J. Appl. Math. 5?(2015),?no. 1, 1–28.
104.Gao, Guang-hua; Sun, Hai-wei; Sun, Zhi-zhong, Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298?(2015),?337–359.
103.Ji, Cui-cui; Sun, Zhi-zhong A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64?(2015),?no. 3, 959–985.
102. Zhao, Xuan; Sun, Zhi-zhong; Karniadakis, George Em, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293?(2015),?184–200.
101.Hao, Zhao-Peng; Sun, Zhi-Zhong; Cao, Wan-Rong, A three-level linearized compact difference scheme for the Ginzburg-Landau equation. Numer. Methods Partial Differential Equations 31?(2015),?no. 3, 876–899.
100.Gao, Guang-hua; Sun, Zhi-zhong Two, alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69?(2015),?no. 9,926–948.
99.Sun, Hong; Sun, Zhi-zhong, On two linearized difference schemes for Burgers' equation. Int. J. Comput. Math. 92?(2015),?no. 6, 1160–1179.
98.Ren, Jincheng; Sun, Zhi-zhong, Maximum norm error analysis of difference schemes for fractional diffusion equations. Appl. Math. Comput. 256?(2015),?299–314.
97. Zhao, Xuan; Sun, Zhi-Zhong, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62?(2015),?no. 3, 747–771.
96. Hao, Zhao-peng; Sun, Zhi-zhong; Cao, Wan-rong, A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281?(2015),?787–805.
95. Qiao, Zhonghua; Sun, Zhi-Zhong; Zhang, Zhengru, Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comp. 84?(2015),?no. 292, 653–674.
94.Gao, Guang-Hua; Sun, Hai-Wei; Sun, Zhi-Zhong, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280?(2015),?510–528.
2014
93.Zhao, Xuan; Sun, Zhi-zhong; Hao, Zhao-peng, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schr?dinger equation. SIAM J. Sci. Comput. 36?(2014),?no. 6, A2865–A2886.
92. Ren, Jincheng; Sun, Zhi-zhong, Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations. East Asian J. Appl. Math. 4?(2014),?no. 3, 242–266.
91.Cao, Hai-Yan; Sun, Zhi-Zhong; Zhao, Xuan, A second-order three-level difference scheme for a magneto-thermo-elasticity model. Adv. Appl. Math. Mech. 6?(2014),?no. 3, 281–298.
90.Sun, Zhi-Zhong; Dai, Weizhong, A new higher-order accurate numerical method for solving heat conduction in a double-layered film with the Neumann boundary condition. Numer. Methods Partial Differential Equations 30(2014),?no. 4, 1291–1314.
89.Zhang, Ya-nan; Sun, Zhi-zhong; Liao, Hong-lin, Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265?(2014),?195–210.
88.Cao, Hai-Yan; Sun, Zhi-Zhong; Gao, Guang-Hua, A three-level linearized finite difference scheme for the Camassa-Holm equation. Numer. Methods Partial Differential Equations 30?(2014),?no. 2, 451–471.
87.Zhang, Ya-nan; Sun, Zhi-zhong, Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 59?(2014),?no. 1, 104–128.
86.Gao, Guang-hua; Sun, Zhi-zhong; Zhang, Hong-wei, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259?(2014),?33–50.
85. Ren, Jincheng; Sun, Zhi-zhong; Cao, Hai-yan, A numerical method for solving the nonlinear Fermi-Pasta-Ulam problem. Numer. Methods Partial Differential Equations 30?(2014),?no. 1, 187–207.
2013
84.Liao, Hong-Lin; Sun, Zhi-Zhong, A two-level compact ADI method for solving second-order wave equations. Int. J. Comput. Math. 90?(2013),?no. 7, 1471–1488.
83.Zhang, Ya-nan; Sun, Zhi-zhong; Wang, Ting-chun, Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation. Numer. Methods Partial Differential Equations 29?(2013),no. 5, 1487–1503.
82.Gao, Guang-Hua; Sun, Zhi-Zhong, Compact difference schemes for heat equation with Neumann boundary conditions (II). Numer. Methods Partial Differential Equations 29?(2013),?no. 5, 1459–1486.
81.Zhu, You-lan; Wu, Xiaonan; Chern, I-Liang; Sun, Zhi-zhong, Derivative securities and difference methods. Second edition. Springer Finance. Springer, New York, 2013. xxii+647 pp. ISBN: 978-1-4614-7305-3; 978-1-4614-7306-0
80.Ren, Jincheng; Sun, Zhi-zhong, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56?(2013),?no. 2, 381–408.
79.Gao, Guang-hua; Sun, Zhi-zhong The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain. J. Comput. Phys. 236?(2013),?443–460.
78. Sun, Zhi-zhong; Zhang, Zai-bin, A linearized compact difference scheme for a class of nonlinear delay partial differential equations. Appl. Math. Model. 37?(2013),?no. 3, 742–752.
77. Ren, Jincheng; Sun, Zhi-zhong; Zhao, Xuan, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232?(2013),?456–467.
2012
76.Qiao, Zhonghua; Sun, Zhi-zhong; Zhang, Zhengru, The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Differential Equations 28?(2012),no. 6, 1893–1915.
75.Zhang, Ya-Nan; Sun, Zhi-Zhong; Zhao, Xuan, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50?(2012),?no. 3, 1535–1555.
74.Liao, Hong-Lin; Sun, Zhi-Zhong; Shi, Han-Sheng; Wang, Ting-Chun, Convergence of compact ADI method for solving linear Schr?dinger equations. Numer. Methods Partial Differential Equations 28?(2012),?no. 5, 1598–1619.
73.Gao, Guang-hua; Sun, Zhi-zhong; Zhang, Ya-nan, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231?(2012),?no. 7, 2865–2879.
72.Li, Juan; Sun, ZhiZhong; Zhao, Xuan, A three level linearized compact difference scheme for the Cahn-Hilliard equation. Sci. China Math. 55?(2012),?no. 4, 805–826.
71. Sun, Weiwei; Sun, Zhi-zhong Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120?(2012),?no. 1, 153–187.
70. Sun, Zhi-zhong; Wu, Xiaonan; Zhang, Jiwei; Wang, Desheng, A linearized difference scheme for semilinear parabolic equations with nonlinear absorbing boundary conditions. Appl. Math. Comput. 218?(2012),?no. 9, 5187–5201.
69.Gao, Guang-hua; Sun, Zhi-zhong, A finite difference approach for the initial-boundary value problem of the fractional Klein-Kramers equation in phase space. Cent. Eur. J. Math. 10?(2012),?no. 1, 101–115.
2011
68.Zhang, Ya-nan; Sun, Zhi-zhong, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230?(2011),?no. 24, 8713–8728.
67. Zhang, Yu-lian; Sun, Zhi-zhong, A second-order linearized finite difference scheme for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation. Int. J. Comput. Math. 88?(2011),?no. 16, 3394–3405.
66.Zhang, Ya-Nan; Sun, Zhi-Zhong; Wu, Hong-Wei, Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49?(2011),?no. 6, 2302–2322.
65.Zhang, Jiwei; Sun, Zhizhong; Wu, Xiaonan; Wang, Desheng, Analysis of high-order absorbing boundary conditions for the Schr?dinger equation. Commun. Comput. Phys. 10?(2011),?no. 3, 742–766.
64.Zhao, Xuan; Sun, Zhi-zhong, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230?(2011),?no. 15, 6061–6074.
63. Liao, Hong-lin; Sun, Zhi-zhong, Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235?(2011),?no. 8, 2217–2233.
62. Gao, Guang-hua; Sun, Zhi-zhong, A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230?(2011),?no. 3, 586–595.
2010
61. Wang, Jialing; Sun, Zhizhong, A second order difference scheme for one-dimensional Stefan problem.Nanjing Daxue Xuebao Shuxue Bannian Kan 27?(2010),?no. 2, 218–229.
60.Zhang, Zai Bin; Sun, Zhi Zhong, A Crank-Nicolson scheme for a class of delay nonlinear parabolic differential equations. (Chinese) J. Numer. Methods Comput. Appl. 31?(2010),?no. 2, 131–140.
59. Du, R.; Cao, W. R.; Sun, Z. Z., A compact difference scheme for the fractional diffusion-wave equation.Appl. Math. Model. 34?(2010),?no. 10, 2998–3007.
58.Sun, Zhi-zhong; Zhao, Dan-dan, On the L∞ convergence of a difference scheme for coupled nonlinear Schr?dinger equations. Comput. Math. Appl. 59?(2010),?no. 10, 3286–3300.
57.Cao, Wan-Rong; Sun, Zhi-Zhong, Maximum norm error estimates of the Crank-Nicolson scheme for solving a linear moving boundary problem. J. Comput. Appl. Math. 234?(2010),?no. 8, 2578–2586.
56. Liao, Hong-Lin; Sun, Zhi-Zhong; Shi, Han-Sheng, Error estimate of fourth-order compact scheme for linear Schr?dinger equations. SIAM J. Numer. Anal. 47?(2010),?no. 6, 4381–4401.
55.Liao, Hong-Lin; Sun, Zhi-Zhong, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differential Equations 26?(2010),?no. 1, 37–60.
2009
54.Liao, Hong-Lin; Shi, Han-Sheng; Sun, Zhi-Zhong, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations. Sci. China Ser. A 52?(2009),?no. 11, 2362–2388.
53. Sun, Zhi-Zhong, Compact difference schemes for heat equation with Neumann boundary conditions.Numer. Methods Partial Differential Equations 25?(2009),?no. 6, 1320–1341.
52.Sun, Zhi-Zhong; Wu, Xiao-Nan A difference scheme for Burgers equation in an unbounded domain.Appl. Math. Comput. 209?(2009),?no. 2, 285–304.
51.Ye, Chao-rong; Sun, Zhi-zhong, A linearized compact difference scheme for an one-dimensional parabolic inverse problem. Appl. Math. Model. 33?(2009),?no. 3, 1521–1528.
50.Xu, Pei-Pei; Sun, Zhi-Zhong A second-order accurate difference scheme for the two-dimensional Burgers' system. Numer. Methods Partial Differential Equations 25?(2009),?no. 1, 172–194.
2008
49.Wang, Jialing; Sun, Zhizhong, A finite difference method for the heat equation with a nonlinear boundary condition. Numer. Math. J. Chinese Univ. 30?(2008),?no. 4, 289–309.
48. Han, Houde; Sun, Zhi-zhong; Wu, Xiao-nan, Convergence of a difference scheme for the heat equation in a long strip by artificial boundary conditions. Numer. Methods Partial Differential Equations 24?(2008),?no. 1, 272–295.
47.Cao, Hai-yan; Sun, Zhi-zhong, A second-order linearized difference scheme for a strongly coupled reaction-diffusion system. Numer. Methods Partial Differential Equations 24?(2008),?no. 1, 9–23.
2007
46. Sun, Zhi Zhong; Wu, Jing Yu, Numerical simulation of a class of coupled parabolic equations in geoscience. (Chinese) Acta Math. Appl. Sin. 30?(2007),?no. 6, 1097–1116.
45.Liu, Jianming; Sun, Zhizhong Finite difference method for reaction-diffusion equation with nonlocal boundary conditions. Numer. Math. J. Chin. Univ. (Engl. Ser.) 16?(2007),?no. 2, 97–111.
44. Ye, Chao-rong; Sun, Zhi-zhong, On the stability and convergence of a difference scheme for an one-dimensional parabolic inverse problem. Appl. Math. Comput. 188?(2007),?no. 1, 214–225.
43.Li, Wei-Dong; Sun, Zhi-Zhong; Zhao, Lei, An analysis for a high-order difference scheme for numerical solution to utt=A(x,t)uxx+F(x,t,u,ut,ux). Numer. Methods Partial Differential Equations 23?(2007),?no. 2, 484–498.
42.Li, Fu-le; Sun, Zhi-zhong, A finite difference scheme for solving the Timoshenko beam equations with boundary feedback. J. Comput. Appl. Math. 200?(2007),?no. 2, 606–627.
41. Sun, Zhi-zhong; Zhao, Lei; Li, Fu-Le, A difference scheme for a parabolic system modelling the thermoelastic contacts of two rods. Numer. Methods Partial Differential Equations 23?(2007),?no. 1, 1–37.
2006
40.Jiang, Mingjie; Sun, Zhizhong, Second-order difference scheme for a nonlinear model of wood drying process. J. Southeast Univ. (English Ed.) 22?(2006),?no. 4, 582–588.
39. Sun, Zhi-zhong, The stability and convergence of an explicit difference scheme for the Schr?dinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 219?(2006),?no. 2, 879–898.
38.Li, Xue Ling; Sun, Zhi Zhong, A compact alternate direct implicit difference method for reaction-diffusion equations with variable coefficients. (Chinese) Numer. Math. J. Chinese Univ. 28?(2006),?no. 1, 83–95.
37.Li, Wei-Dong; Sun, Zhi-Zhong, An analysis for a high-order difference scheme for numerical solution to uxx=F(x,t,u,ut,ux). Numer. Methods Partial Differential Equations 22?(2006),?no. 4, 897–919.
36.Zhao, Lei; Sun, Zhi-zhong; Liu, Jian-ming Numerical solution to a one-dimensional thermoplastic problem with unilateral constraint. Numer. Methods Partial Differential Equations 22?(2006),?no. 3, 744–760.
35. Sun, Zhi-zhong; Wu, Xiaonan, The stability and convergence of a difference scheme for the Schr?dinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 214?(2006),?no. 1, 209–223.
34.Sun, Zhi-zhong; Wu, Xiaonan, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56?(2006),?no. 2, 193–209.
2005
33.Sun, Zhi Zhong; Li, Xue Ling, A compact alternating direction implicit difference method for reaction diffusion equations. (Chinese) Math. Numer. Sin. 27?(2005),?no. 2, 209–224.
2004
32.Wu, Xiaonan; Sun, Zhi-Zhong, Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Numer. Math. 50?(2004),?no. 2, 261–277.
31. Sun, Zhi-zhong; Zhu, You-lan, A second order accurate difference scheme for the heat equation with concentrated capacity. Numer. Math. 97?(2004),?no. 2, 379–395.
30.Zhang, Ling-yun; Sun, Zhi-zhong, A second-order linearized difference scheme on nonuniform meshes for nonlinear parabolic systems with Neumann boundary value conditions. Numer. Methods Partial Differential Equations 20(2004),?no. 2, 230–247.
2003
29.Sun, Zhi-zhong; Shen, Long-Jun, Long time asymptotic behavior of solution of implicit difference scheme for a semi-linear parabolic equation. J. Comput. Math. 21?(2003),?no. 5, 671–680.
28.Zhang, Ling-Yun; Sun, Zhi-Zhong, A second-order linearized difference scheme on nonuniform meshes for nonlinear parabolic systems with Dirichlet boundary value conditions. Numer. Methods Partial Differential Equations 19(2003),?no. 5, 638–652.
27. Pan, Zhu Shan; Sun, Zhi Zhong, A second order difference scheme for a basic semiconductor equation with heat conduction. (Chinese) Numer. Math. J. Chinese Univ. 25?(2003),?no. 1, 60–73.
2001
26.Sun, Zhi-Zhong, A high-order difference scheme for a nonlocal boundary-value problem for the heat equation. Comput. Methods Appl. Math. 1?(2001),?no. 4, 398–414.
25.Sun, Zhi-Zhong, An unconditionally stable and O(τ2+h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients. Numer. Methods Partial Differential Equations 17?(2001),?no. 6, 619–631.
24. Wan, Zheng-su; Sun, Zhi-zhong, On the L∞ convergence and the extrapolation method of a difference scheme for nonlocal parabolic equation with natural boundary conditions. J. Comput. Math. 19?(2001),?no. 5, 449–458.
2000
23. Sun, Zhizhong, A note on finite difference method for generalized Zakharov equations. J. Southeast Univ. (English Ed.) 16?(2000),?no. 2, 84–86.
22.Sun, Zhizhong; Yang, Mei; Shi, Peihu; Chen, Shaobing, On linearized finite difference simulation for the model of nuclear reactor dynamics. Numer. Math. J. Chinese Univ. (English Ser.) 9?(2000),?no. 2, 159–174.
1998
21. Chen, Shaobing; Sun, Zhizhong, A class of second-order characteristic difference schemes for a model of population dynamics. J. Southeast Univ. (English Ed.) 14?(1998),?no. 2, 133–137.
20.Sun, Zhi-Zhong; Zhu, Qi-Ding, On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation.J. Comput. Appl. Math. 98?(1998),?no. 2, 289–304.
1997
19. Sun, Zhi Zhong, A second-order difference scheme for a model of oil deposits. (Chinese) Acta Math. Appl. Sinica 20?(1997),?no. 4, 551–558.
18.Sun, Zhizhong, On L∞ convergence of a linearized difference scheme for the Kuramoto-Tsuzuki equation. Nanjing Daxue Xuebao Shuxue Bannian Kan 14?(1997),?no. 1, 5–9.
1996
17.Sun, Zhizhong, On L∞ stability and convergence of fictitious domain method for the numerical solution to parabolic differential equation with derivative boundary conditions. J. Southeast Univ. (English Ed.) 12?(1996),?no. 2, 107–110.
16.Sun, Zhi Zhong, An unconditionally stable and second-order convergent difference scheme for the system of wave equations with heat conduction. (Chinese) Math. Numer. Sin. 18?(1996),?no. 2, 161–170.
15. Sun, Zhi-Zhong, A second-order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions. J. Comput. Appl. Math. 76?(1996),?no. 1-2, 137–146.
14.Sun, Zhi Zhong, A generalized box scheme for the numerical solution of the Kuramoto-Tsuzuki equation. (Chinese) J. Southeast Univ. 26?(1996),?no. 1, 87–92.
13.Sun, Zhizhong, A second-order convergent difference scheme for the initial-boundary value problem of superthermal electron transport equation. Nanjing Daxue Xuebao Shuxue Bannian Kan 13?(1996),?no. 1, 14–22.
12.Sun, Z. Z., A linearized difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Math. 14(1996),?no. 1, 1–7.
1995
11.Sun, Zhi Zhong, A second-order convergent difference scheme for the mixed initial-boundary value problems of a class of parabolic-elliptic coupled systems of equations. II. (Chinese) Math. Numer. Sinica 17?(1995),?no. 4,391–401.
10.Sun, Zhi Zhong, A second-order convergent difference scheme for the mixed initial-boundary value problems of a class of parabolic-elliptic coupled systems of equations. I. (Chinese) Math. Numer. Sinica 17?(1995),?no. 1, 1–12.
9.Sun, Zhizhong, Modified Crank-Nicolson scheme for the initial-boundary value problem of superthermal electron transport equation. J. Southeast Univ. (English Ed.) 11?(1995),?no. 2, 83–87.
8. Sun, Zhi Zhong, A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comp. 64?(1995),?no. 212, 1463–1471.
1994
7.Sun, Zhi-zhong, A new class of difference schemes for linear parabolic equations in 1-D. Chinese J. Numer. Math. Appl. 16?(1994),?no. 3, 1–20.
6.Sun, Zhi-Zhong, A class of second-order accurate difference schemes for solving quasilinear parabolic equations. (Chinese) Math. Numer. Sinica 16?(1994),?no. 4, 347–361.
5.Sun, Zhi-Zhong, A new class of difference schemes for solving linear parabolic differential equations.(Chinese) Math. Numer. Sinica?16 (1994), no. 2, 115--130; translation in Chinese J. Numer. Math. Appl. 16 (1994), no. 3, 1–20
4.Sun, Zhi-Zhong, On numerical solution to an elliptic-parabolic coupled system arising from the fluid-solute-heat flow through saturated porous media. Nanjing Daxue Xuebao Shuxue Bannian Kan 11?(1994),?no. 2, 126–135.
1993
3.Sun, Zhi-Zhong, On fictitious domain method for the numerical solution to heat conduction equation with derivative boundary conditions. J. Southeast Univ. (English Ed.) 9?(1993),?no. 2, 38–44.
2.Sun, Zhi-Zhong, A reduction of order method for numerically solving elliptic differential equations.(Chinese) J. Southeast Univ. 23?(1993),?no. 6, 8–16.
1989
1.Wu, Chi-kuang; Su, Yu-Cheng; Sun, Zhi-Zhong, Asymptotic method for singular perturbation problem of ordinary difference equations. Appl. Math. Mech. (English Ed.) 10 (1989), no. 3, 221–230; translated from Appl. Math. Mech.10 (1989), no. 3, 211--220(Chinese)
项目
6.纳米尺度多层薄膜热传导数学模型及其高精度数值算法. 批准号:**。2017年1月至2020年12月。
国家自然科学基金。(主持)
5. 空间分数阶偏微分方程高精度快速算法的研究. 批准号:**. 2013年1月至2016年12月。 国家
自然科学基金。(主持)
4. 分数阶偏微分方程初边值问题差分方法研究。批准号: **。2009年1月至2011年12月。 国家自然
科学基金。(主持)
3. 某些非线性发展方程高阶差分方法的研究,批准号: **。2005年1月至2007年12月。 国家自然
科学基金。(主持)
2. 高度非线性强耦合偏微分方程组差分模拟中的降价法理论。批准号:**。1999年1月至2001年
12月。国家自然科学基金。(主持)
1. 高度非线性强耦合偏微分方程组差分模拟中的降价法理论。批准号:BK97004。1999年1月至2001年
12月。江苏省自然科学基金。(主持)
荣誉
30. 2015—2016学年“东南大学中泰国立奖教金二等奖”。东南大学教育基金会。2016年6月。
29. 东南大学2014-2015年度教书育人、管理育人、服务育人积极分子称号, 东南大学工会委员会。2016年4
月。
28. 南京市第十一届自然科学优秀学术论文奖三等奖. (2015年12月)
获奖论文:高广花、孙志忠、张宏伟,A new fractional numerical differentiation formula to approximatethe
Caputo fractional derivative and its applications, Journal of Computational Physics,259 (2014) 33–50
27. 2015年度东南大学优秀博士论文指导教师 。2015年6月。
博士论文:赵璇《分数阶偏微分方程的高阶差分方法及其应用研究》
26. 2013年Journal of Computational Physics优秀审稿人。2014年6月。
25.介质成像的数学模型和数值实现,江苏省人民政府, 江苏科学技术奖,三等奖,排名2。2012年3月。
24. “大学生数学建模能力与创新人才培养的探索与实践” 获江苏省高等教育教学成果奖一等奖,江苏省教
育厅,排名3。2011年9月。
23. 2010—2011学年“东南大学中泰国立奖教金三等奖”。东南大学教育基金会。2011年6月。
22.“大学生数学建模能力与创新人才培养的探索与实践”获东南大学教学成果一等奖,排名3.
东南大学。 2011年5月。
21. 2008—2009学年“许国平林健忠奖教金”。东南大学教育基金会。2009年6月。
20. 江苏省高校“青蓝工程”青年学术带头人 。2006年。
19.中国计算数学学会2011年优秀青年论文竞赛优秀奖指导教师
获奖论文:廖洪林,孙志忠,史汉生,Error estimate of fourth-order compact scheme for linear Schr?dinger
equations.SIAM J. Numer. Anal.47 (2010), no. 6,4381--4401.
18. 东南大学优秀硕士论文指导老师。2008年8月。
硕士学位论文:曹海燕《一类非对称强耦合反应—扩散系统的二阶差分格式》
17. 江苏省优秀硕士论文指导老师。2009年10月。
硕士学位论文:徐沛沛《两类非线性偏微分方程的有限差分方法模拟》
16.2004—2005学年“林健忠奖教金”。东南大学教育基金会。2005年6月。
15.2004年度东南大学优秀教材将奖二等奖(排名2)。教材名称:《计算方法与实习》。2004年12月。
14.2004年度江苏省教学成果奖一等奖(排名6)。获奖成果:开展数学建模活动推进理工科数学课程体系
改革。2005年2月。
13.2004年度东南大学教学成果奖特等奖(排名3)。获奖成果:开展数学建模活动推进理工科数学课程体系
改革。2004年11月。
12. 2003年度东南大学教学工作优秀一等奖。2003年9月。
11. 2003年度东南大学优秀研究生教材奖(排名1)。教材名称:《数值分析》。
10. 江苏省研究生培养创新工程优秀研究生课程(排名1)。课程名称:《数值分析》。江苏省学位委员会,
江苏省教育厅。2002年12月。
9. 江苏省本科生培养创新工程优秀课程群(排名4)。课程名称:《工科数学群》。江苏省学位委员会,
江苏省教育厅。2002年6月。
8. 全国大学生数学建模竞赛优秀指导教师。全国大学生数学建模竞赛组委会。2001年12月。
7. 《计算方法与实习》教材2001年被评为全国优秀畅销书。中国书刊发行行业协会。2001年12月。
6. 1999-2000学年“东南大学—华为奖教金”。东南大学教育基金会。2000年6月。
5. 一九九九年全国大学生数学建模竞赛江苏赛区优秀教练员。江苏省教育委员会。1999年12月。
4. 1998年度东南大学教学工作优秀二等奖。1998年9月。
3. 1996年度东南大学教学工作优秀三等奖。1996年9月。
2. 1995-1996年度亿利达优秀青年教师奖。东南大学教育基金会。1996年6月。
1.1995年度东南大学教学工作优秀特别奖(排名3)。1995年9月。
全国“明天小小科学家”评审专家
全国青少年科技创新大赛初评专家
全国高考命题专家
国家基金项目评审专家
全国博士后基金评审专家
60多个中外科技期刊论文评审专家
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
东南大学数学学院导师教师师资介绍简介-孙志忠
本站小编 Free考研考试/2021-02-16
相关话题/东南大学 数学学院
东南大学数学学院导师教师师资介绍简介-沈亮
沈亮副教授数学学院基础数学系电话:邮箱:lshen@seu.edu.cn地址:东南大学数学学院邮编:210096基本信息研究成果项目与荣誉社会兼职1978年8月生于江苏南通。2006年4月博士毕业于东南大学数学系,随后留校工作。2009年8月至2010年9月获教育部留学基金委资助访问美国俄亥俄大学环 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-沈斌
沈斌讲师数学学院基础数学系电话:邮箱:你懂的地址:图书馆北506邮编:211189基本信息研究成果项目与荣誉社会兼职主要从事微分几何中的Finsler几何及相关问题研究,也关心拓扑图论,几何分析等问题。2012.07-2012.12重庆理工大学数学与统计学院讲师2012.12-今东南大学数学系讲师2 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-石佩虎
石佩虎副教授数学学院计算数学系电话:邮箱:sph2106@aliyun.com地址:邮编:基本信息研究成果项目与荣誉社会兼职石佩虎,1967年生,湖南省花垣县人,1993年7月至今来本校工作,主要从事教学和科研工作,现为数学学院副教授。今年来,主要为本科生和硕士生讲授课程有:“微分方程及应用”,“数 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-唐向东
唐向东副教授数学学院基础数学系电话:邮箱:地址:邮编:基本信息研究成果项目与荣誉社会兼职基础数学专业,副教授,研究兴趣涉及环论,模论,半群代数理论及其应用,教学方面给本科生讲授过的课程包括几何与代数,线性代数,高等代数,近世代数,给研究生讲授的课程:工程矩阵理论,基础代数。 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-万颖
万颖讲师数学学院系统科学系电话:邮箱:wanying1991seu@gmail.com地址:邮编:基本信息研究成果项目与荣誉社会兼职万颖,女,1991年生。2018年于东南大学获理学博士学位,随后在美国德克萨斯农工大学卡塔尔分校、新加坡南洋理工大学计算机科学与工程学院从事博士后研究。研究方向动态网络 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-吴云建
吴云建副教授数学学院系统科学系电话:邮箱:yunjian_wu@163.com地址:邮编:基本信息研究成果项目与荣誉社会兼职2019-至今东南大学1.Wu,Yunjian(*),ParityResultsForBroken11-diamondPartitions,OPENMATHEMATICS,20 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-吴宏伟
吴宏伟副教授数学学院计算数学系电话:邮箱:hwwu@seu.edu.cn地址:邮编:基本信息研究成果项目与荣誉社会兼职吴宏伟,1963年生,江苏无锡人。1984年7月到本校参加工作。现为数学系副教授,从事教学和科研工作。先后为本科生讲授《高等数学》,《线性代数》,《计算机原理》,《数值分析》,《微分 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-吴建专
吴建专副教授数学学院统计与精算系电话:邮箱:jzwu@seu.edu.cn地址:邮编:基本信息研究成果项目与荣誉社会兼职吴建专,副教授。1989年9月至1996年4月,就读于哈尔滨工业大学数学系,获得理学学士和理学硕士学位。2009年1月获得东南大学数学系理学博士学位。1996年4月起在东南大学数学 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-吴昊
吴昊副教授数学学院应用数学系电话:邮箱:地址:九龙湖图书馆5楼511邮编:基本信息研究成果项目与荣誉社会兼职本人从事常微分方程定性理论研究,着重关注正规形相关分支。05.9-06.7西班牙巴塞罗那CRM研究所博士后06.9-东南大学数学系教师96.9-00.7苏州大学本科学士00.9-05.7北京大 ...东南大学师资导师 本站小编 Free考研考试 2021-02-16东南大学数学学院导师教师师资介绍简介-吴霞
吴霞副教授数学学院基础数学系电话:邮箱:地址:邮编:基本信息研究成果项目与荣誉社会兼职研究方向:代数数论、代数K理论2008.6-至今东南大学数学系1999.9-2003.7南京师范大学数科院本科2003.9-2008.6南京大学数学系硕博连读1.X.Wu*,Y.Q.Chen,Noteonpower ...东南大学师资导师 本站小编 Free考研考试 2021-02-16