删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

东南大学数学学院导师教师师资介绍简介-孙志忠

本站小编 Free考研考试/2021-02-16

闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃繘鍩€椤掍胶鈻撻柡鍛█閵嗕礁鈻庨幘鍐插敤濡炪倖鎸鹃崑鐔兼偘閵夆晜鈷戦柛锔诲幖閸斿銇勯妸銉﹀櫧濠㈣娲樼换婵嗩潩椤撶姴骞嶉梻浣告啞閹稿棝宕ㄩ鐙€鍋ч梻鍌欑劍婵炲﹪寮ㄩ柆宥呭瀭闁割偅娲栨闂佸憡娲﹂崹鎵不濞戙垺鐓曢柟鎹愬皺閸斿秹鏌涚€f柨娲﹂埛鎴犵棯椤撶偞鍣烘い銉ヮ樀閺岋綁鍩ラ崱妯煎几闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弮鍫熸殰闁稿鎸剧划顓炩槈濡娅ч梺娲诲幗閻熲晠寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ユ婵$敻宕熼姘棟闂佸壊鐓堥崰鎺楀箰閸愵喗鈷戦柛娑樷看濞堟洜鈧厜鍋撻柟闂寸閽冪喐绻涢幋娆忕仼缂佺姷绮穱濠囧Χ閸屾矮澹曢梻浣侯攰濞呮洟宕濆▎鎾崇畺闁挎稑瀚ч崑鎾绘晲鎼粹剝鐏嶉梺绋匡工閻忔岸銆冮妷鈺傚€烽柤纰卞厸閾忓酣姊洪崨濠冣拹鐎光偓閹间礁钃熼柨婵嗘啒閺冨牆鐒垫い鎺戝閻ゎ噣鏌℃径瀣仼闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖瑜版帒鐐婃い蹇撳濮c垹顪冮妶蹇氱闁告柨鐭傞垾鏃堝礃椤斿槈褔鏌涘☉鍗炵仯妞ゆ柨娲ら埞鎴﹀煡閸℃ぞ绨煎銈冨妼閿曨亪鐛崘顔肩伋闁哄倶鍎查~宥夋⒑闂堟稓绠氭俊鐙欏洤绠繛宸簼閳锋垹绱掔€n厽纭剁紒鐘卞嵆閺屾稑顫濋澶婂壋濠电偛妫庨崹钘夘嚕婵犳艾唯闁挎梹鍎抽獮鍫ユ⒒娴h櫣甯涙慨濠勭帛閻忔瑩姊哄畷鍥╁笡婵炶尙鍠栧濠氭偄绾拌鲸鏅┑鐐叉閸ㄥ灚淇婃禒瀣€甸柛顭戝亝缁舵煡鎮楀鐓庢灍缂佸倹甯¢弫鍐磼濮樿京鏆伴柣鐔哥矊闁帮綁骞冨Δ鍜佹晣闁靛繆妾ч幏缁樼箾鏉堝墽绉繛鍜冪秮婵″瓨绻濋崶銊у幈闂佽鍎抽顓犵不閺嶎偆纾兼俊銈呭暙閺嬪酣鎽堕弽顓熺厱婵炴垵宕獮妤呭级閸繄澧︽慨濠冩そ濡啫鈽夋潏銊愩垽姊洪崫鍕櫤缂侇喗鎹囧畷鍝勨槈閵忕姷顔婂┑掳鍊撻懗鍫曞储閸楃偐鏀介柣鎰綑閻忋儳鈧娲﹂崜鐔兼偘椤斿槈鐔兼嚃閳哄喛绱查梻浣虹帛閻熴儵骞婇幇鏉跨畺闁兼祴鏅濈壕濂稿级閸稑濡肩紒妞﹀厾褰掓偑閸涱垳鏆ら梺璇″枛婢ц姤绂掗敃鍌涘仼閻忕偠妫勭粻娲⒒閸屾艾鈧嘲霉閸ヮ剦鏁嬮柡宥庡幖閸ㄥ倿鏌℃径瀣剁穿婵炲樊浜滄儫闂佸疇妗ㄩ懗鍫曞礉閿曗偓椤啴濡堕崱妤冪懆闂佹寧娲╃粻鎾崇暦濮樿泛绾ф繛鍡楀⒔閸炵敻鎮峰⿰鍐㈤棁澶婎渻鐎n亪顎楅柛銊︾箞閺屾盯顢曢妶鍛€荤紓浣稿閸嬨倝骞冨Δ鍛櫜閹肩补鈧尙鐩庨柣搴㈩問閸犳牕岣块垾鎰佹綎婵炲樊浜滅粻浼村箹鏉堝墽鎮奸柣锝囨暬濮婅櫣娑甸崨顔惧涧闂佸憡姊归〃鍫ュ礆閹烘挾绡€婵﹩鍓涢悡鎴炵節閵忥絾纭鹃柣顒€銈搁幆渚€宕奸妷锔规嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撴瑦銇勯弬璇插婵炲眰鍊濋弻瀣炊椤掍胶鍘撻梺鎼炲妽缁嬫帒鈻嶉崱娑欑厽闊洦鎸搁弳锝夋煛瀹€瀣ɑ闁诡垱妫冮弫宥夊礋椤撶喐顔嗛梻鍌欒兌鏋梺甯稻缁傚秹宕奸弴鐘茬ウ婵犵數濮撮崯顖炲磿閻斿吋鐓忓┑鐘茬箳閻e崬霉濠婂嫷娈滄慨濠呮缁瑩骞愭惔銏″闂備胶纭堕弲娑㈠疮椤愩垹绁梻浣稿閸嬩線宕曢弻銉﹀亗婵炲棙鍨圭壕钘壝归敐澶嬫锭闁诲繆鏅犻弻锝堢疀閺囩倫銏ゆ婢跺绡€濠电姴鍊绘晶銏ゆ煟閿濆洤鍔嬮柟渚垮妽缁绘繈宕橀埞澶歌檸闁诲氦顫夊ú蹇涘礉瀹ュ洦宕叉繝闈涱儏绾惧吋绻濇繝鍌涘櫤闁革綆鍨伴埞鎴︽偐濞堟寧姣屽┑鈩冨絻閹虫ê鐣烽幋锕€宸濇い鏍ㄧ☉鎼村﹪姊洪崜鎻掍簴闁稿骸鍟块悾鍨瑹閳ь剟寮婚悢鐓庣妞ゆ梻鈷堥弳顓㈡⒑閸濆嫭鍣洪柟顔煎€垮濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�
547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁哄苯绉烽¨渚€鏌涢幘璺烘灈鐎殿喚绮换婵嬪炊閵婏附鐝冲┑鐘灱濞夋盯鏁冮敃鍌涘仾闁搞儺鍓氶埛鎴︽偡濞嗗繐顏╃紒鈧崘鈹夸簻闁哄洤妫楅幊鎰版儗閸℃稒鐓曢柟鑸妽閺夊搫霉濠婂嫮鐭掗柣鎿冨亰瀹曞爼濡搁敃鈧棄宥咁渻閵堝啫鍔滅紒顔芥崌瀵鏁愭径濠勵啋闁诲酣娼ч幉锟犲礆濞戞ǚ鏀芥い鏃傘€嬮弨缁樹繆閻愯埖顥夐柣锝呭槻铻栭柛娑卞幘椤ρ囨⒑閸忚偐銈撮柡鍛洴瀹曠敻骞掑Δ浣叉嫽婵炶揪绲介幉锟犲箟閹间焦鐓曢柨婵嗗暙閸旓妇鈧娲橀崹鍨暦閻旂⒈鏁嶆繛鎴灻奸幃锝夋⒒娴h櫣甯涢柛銊ュ悑閹便劑濡舵径濠勬煣闂佸綊妫块悞锕傛偂閵夆晜鐓熼柡鍥╁仜閳ь剙婀遍埀顒佺啲閹凤拷1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熼柨婵嗩槸椤懘鏌曡箛濠冩珕婵絽鐭傚铏圭矙濞嗘儳鍓遍梺鍦嚀濞层倝鎮鹃悿顖樹汗闁圭儤绻冮弲婵嬫⒑閹稿海绠撴繛璇х畵椤㈡ɑ绻濆顓涙嫽婵炴挻鍩冮崑鎾绘煃瑜滈崜娑㈠磻濞戙垺鍤愭い鏍ㄧ⊕濞呯娀鏌涘▎蹇fФ濞存粍绮嶉妵鍕箛閳轰胶鍔村┑鈥冲级濡炰粙寮诲☉銏″亹閻犲泧鍐х矗婵$偑鍊栭幐鎼佸触鐎n亶鍤楅柛鏇ㄥ墰缁♀偓闂佸憡鍔﹂崢楣冨矗閹达附鈷掗柛灞剧懅缁愭棃鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘绘煙缂併垹鏋熼柣鎾寸洴閹﹢鎮欓惂鏄忣潐閺呭爼鎳犻钘変壕闁割煈鍋呯欢鏌ユ倵濮樼厧娅嶉柛鈹惧亾濡炪倖甯掗敃锔剧矓闂堟耽鐟扳堪閸曨厾鐓夐梺鎸庣箘閸嬬偤骞嗛弮鍫濈參闁逞屽墴瀵劍绂掔€n偆鍘介梺褰掑亰閸ㄤ即鎯冮崫鍕电唵鐟滃酣鎯勯鐐茶摕婵炴垯鍨规儫闂侀潧锛忛崒婵囶€楅梻鍌欐缁鳖喚寰婇崸妤€绀傛慨妞诲亾鐎殿噮鍋婇獮妯肩磼濡桨姹楅梻浣藉亹閳峰牓宕滈敃鈧嵄濞寸厧鐡ㄩ悡鐔兼煟閺傛寧鎲搁柣顓烇功缁辨帞绱掑Ο铏诡儌闂佸憡甯楃敮鎺楀煝鎼淬劌绠荤€规洖娲ら埀顒傚仱濮婃椽宕橀崣澶嬪創闂佸摜鍠嶉崡鎶藉极瀹ュ應鍫柛鏇ㄥ幘閻﹀牓姊洪棃娑㈢崪缂佹彃澧藉☉鍨偅閸愨晝鍙嗛梺鍝勬祩娴滎亜顬婇鈧弻锟犲川椤愩垹濮﹀┑顔硷功缁垶骞忛崨鏉戝窛濠电姴鍊瑰▓姗€姊洪悡搴d粚闁搞儯鍔庨崢杈ㄧ節閻㈤潧孝闁哥喓澧楅弲鑸垫綇閳哄啰锛濋梺绋挎湰缁嬫帒鐣峰畝鍕厵缂佸灏呴弨鑽ょ磼閺冨倸鏋涢柛鈺嬬節瀹曟帒鈽夋潏顭戞闂佽姘﹂~澶娒洪敂鐣岊洸婵犻潧顑呯粻顖炴煕濞戝崬鐏¢柛鐘叉閺屾盯寮撮妸銉ョ閻炴碍鐟╁濠氬磼濮橆兘鍋撴搴g焼濞达綁娼婚懓鍧楁⒑椤掆偓缁夋挳宕掗妸褎鍠愰柡鍐ㄧ墕缁犳牗绻涘顔荤盎閹喖姊虹€圭姵銆冮柤鍐茬埣椤㈡瑩宕堕浣叉嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢х敻鏌熼鎯т槐鐎规洖缍婇、鏇㈡偐鏉堚晝娉块梻鍌欒兌閹虫捇顢氶銏犵;婵炴垯鍩勯弫瀣節婵犲倹鍣界痪鍓у帶闇夐柨婵嗘噺閹牊銇勯敐鍛仮闁哄本娲熷畷鎯邦槻妞ゅ浚鍘介妵鍕閳╁啰顦版繝娈垮枓閸嬫捇姊虹€圭姵銆冪紒鈧担鍦彾濠㈣埖鍔栭埛鎺懨归敐鍥ㄥ殌妞ゆ洘绮庣槐鎺斺偓锝庡亜濞搭喚鈧娲樼换鍌炲煝鎼淬劌绠婚悹楦挎閵堬箓姊虹拠鎻掑毐缂傚秴妫濆畷鎶筋敋閳ь剙顕i銏╁悑闁糕剝鐟ч惁鍫熺節閻㈤潧孝闁稿﹨顫夐崚濠囧礂闂傚绠氶梺鍝勮閸庢煡寮潏鈺冪<缂備焦岣跨粻鐐烘煙椤旇崵鐭欐俊顐㈠暙閳藉螖娴gǹ顎忛梻鍌氬€烽悞锕傚箖閸洖绀夌€光偓閳ь剛妲愰悙瀵哥瘈闁稿被鍊曞▓銊ヮ渻閵堝棗濮傞柛濠冾殜閹苯鈻庨幇顏嗙畾濡炪倖鍔戦崐鏍汲閳哄懏鐓曢幖瀛樼☉閳ь剚顨婇獮鎴﹀閻橆偅鏂€闁诲函缍嗘禍鐐哄磹閻愮儤鈷戦梻鍫熻儐瑜版帒纾块柡灞诲労閺佸洦绻涘顔荤凹闁抽攱鍨块弻娑樷攽閸℃浼屽┑鈥冲级閹倿寮婚敐鍛傛梹鎷呴搹鍦帨闁诲氦顫夊ú姗€宕归崸妤冨祦闁圭儤鍤﹂弮鍫濈劦妞ゆ帒瀚憴锔炬喐閻楀牆绗氶柣鎾寸洴閺屾盯骞囬埡浣割瀷婵犫拃鍕创闁哄矉缍侀獮妯虹暦閸モ晩鍟嬮梻浣告惈閺堫剟鎯勯鐐叉槬闁告洦鍨扮粈鍐煃閸濆嫬鏋ゆ俊鑼厴濮婄粯鎷呴崨闈涙贡閹广垽骞囬悧鍫濆壎闂佸吋绁撮弲婊堬綖閺囥垺鐓欓柣鎴烇供濞堛垽鏌℃担闈╄含闁哄本绋栫粻娑㈠箼閸愨敩锔界箾鐎涙ḿ鐭掔紒鐘崇墵楠炲啫煤椤忓嫮顔婇悗骞垮劚濡盯濡堕弶娆炬富闁靛牆楠告禍婊勩亜閿旂偓鏆柣娑卞櫍瀹曞崬鈽夊Ο娲绘闂佸湱鍘ч悺銊╁箰婵犳熬缍栫€广儱顦伴埛鎴︽煕閿旇骞栭柛鏂款儔閺屾盯濡搁妸锔惧涧缂備焦姊婚崰鏍ь嚕閹绢喗鍋勯柧蹇氼嚃閸熷酣姊洪崫鍕垫Ц闁绘妫欓弲鑸电鐎n亞鐣烘繝闈涘€搁幉锟犳偂濞戙垺鐓曟繝濞惧亾缂佲偓娴e湱顩叉繝濠傜墕绾偓闂備緡鍓欑粔鐢告偂閺囩喆浜滈柟閭﹀枛瀛濋梺鍛婃⒐缁捇寮婚敐澶婄閻庢稒岣块ˇ浼存⒑閸濆嫮鐏遍柛鐘崇墵楠炲啫饪伴崗鍓у枔閹风娀寮婚妷褉鍋撳ú顏呪拻濞达絽鎳欒ぐ鎺濇晞闁搞儯鍔庣粻楣冩煃瑜滈崜鐔煎蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垶绮庨悿鈧梺鍝勫暙閸婂爼鍩€椤掍礁绗氱紒缁樼洴瀹曢亶骞囬鍌欐偅婵$偑鍊ら崑鍛崲閸曨垰绠查柛鏇ㄥ€嬪ú顏嶆晜闁告粌鍟伴懜鐟扳攽閻樿尙妫勯柡澶婄氨閸嬫捁顦寸€垫澘锕ョ粋鎺斺偓锝庝簽閺屽牆顪冮妶鍡欏⒈闁稿绋撶划濠氭偐閾忣偄寮垮┑鈽嗗灥椤曆囥€傞幎鑺ョ厱閻庯綆鍋呭畷宀勬煟濞戝崬娅嶇€规洖缍婇、娆撴偂鎼搭喗缍撻梻鍌氬€风粈渚€骞楀⿰鍫濈獥闁规儳顕粻楣冩煃瑜滈崜娑㈠焵椤掑喚娼愭繛鍙夛耿瀹曞綊宕稿Δ鍐ㄧウ濠碘槅鍨伴惃鐑藉磻閹炬枼妲堟繛鍜佸弾娴滎亪銆侀幘璇茬缂備焦菤閹疯櫣绱撻崒娆戝妽闁挎岸鏌h箛銉х暤闁哄被鍔岄~婵嬫嚋閻㈤潧甯楅柣鐔哥矋缁挸鐣峰⿰鍐f闁靛繒濮烽敍娑㈡⒑缂佹ɑ鈷掗柛妯犲洦鍊块柛顭戝亖娴滄粓鏌熼悜妯虹仴闁哄鍊栫换娑㈠礂閻撳骸顫掗梺鍝勭灱閸犳牠銆佸▎鎾村殐闁宠桨鑳堕崢浠嬫煟鎼淬値娼愭繛鍙壝叅闁绘梻顑曢埀顑跨閳藉濮€閳ユ枼鍋撻悜鑺ョ厾缁炬澘宕晶顔尖攽椤曞棝妾ǎ鍥э躬閹瑩顢旈崟銊ヤ壕闁哄稁鍘奸崹鍌氣攽閸屾簱鍦閸喒鏀介柣妯虹枃婢规ḿ绱掗埀顒勫磼閻愭潙鈧爼鏌i幇顓熺凡閻庢艾楠搁湁婵犲﹤瀚惌鎺楁煛瀹€鈧崰鏍嵁閸℃凹妲鹃梺鍦櫕婵炩偓闁哄本绋掔换婵嬪礃閵娿儺娼氶梻浣告惈閻ジ宕伴弽顓溾偓浣糕枎閹炬潙娈愰梺瀹犳〃閼冲爼宕㈡禒瀣厽閹兼番鍊ゅḿ鎰箾閼碱剙鏋戠紒鍌氱Ч瀹曞ジ寮撮悩鑼偊闂備焦鎮堕崕娲礈濞嗘劕鍔旈梻鍌欑窔濞佳囁囬銏犵9闁哄洠鎳炴径濠庢僵妞ゆ垼濮ら弬鈧梻浣虹帛閸旀﹢宕洪弽顑句汗鐟滃繒妲愰幒妤佸殤妞ゆ巻鍋撳ù婊冨⒔缁辨帡宕掑姣櫻囨煙瀹曞洤浠卞┑锛勬焿椤т焦绻涢弶鎴濐伃婵﹥妞介獮鎰償閵忣澁绱╅梻浣呵归鍡涘箲閸ヮ灛娑欐媴閻熸壆绐為梺褰掑亰閸橀箖宕㈤柆宥嗩棅妞ゆ劑鍨烘径鍕箾閸欏澧遍柡渚囧櫍瀹曞ジ寮撮悢鍝勫箥闂備胶枪缁绘劙宕ョ€n喖纾归柟鎵閻撴盯鎮橀悙鍨珪閸熺ǹ顪冮妵鍗炲€荤粣鏃堟煛鐏炲墽顬肩紒鐘崇洴瀵噣宕掑Δ渚囨綌闂傚倸鍊稿ú銈壦囬悽绋胯摕婵炴垯鍨瑰敮濡炪倖姊婚崢褔锝為埡鍐<闁绘劦鍓欓崝銈夋煏閸喐鍊愮€殿喖顭峰鎾偄閾忓湱妲囬梻濠庡亜濞诧箑煤濠婂牆姹查柣妯烘▕濞撳鏌曢崼婵囶棡缂佲偓婢跺⿴娓婚悗娑櫳戦崐鎰殽閻愯尙澧﹀┑鈩冩倐婵¢攱鎯旈敐鍛亖缂備緡鍠楅悷鈺佺暦瑜版帩鏁婄痪鎷岄哺缂嶅秹姊婚崒姘偓鐑芥嚄閼哥數浠氭俊鐐€栭崹闈浳涘┑瀣祦闁归偊鍘剧弧鈧┑顔斤供閸撴盯顢欓崱娑欌拺闁告稑锕g欢閬嶆煕閵娾晙鎲剧€规洑鍗冲畷鍗炩槈濞嗘垵骞堥梻浣告惈濞层垽宕濈仦鐐珷濞寸厧鐡ㄩ悡娑㈡煕閳╁厾顏堝传閻戞ɑ鍙忓┑鐘插鐢盯鏌熷畡鐗堝殗鐎规洦鍋婂畷鐔碱敃閿涘嫬绗¢梻浣筋嚙鐎涒晠顢欓弽顓炵獥婵°倕鎳庣壕鍨攽閸屾簱瑙勵攰闂備礁婀辨晶妤€顭垮Ο鑲╃焼闁告劏鏂傛禍婊堢叓閸ャ劍灏版い銉уТ椤法鎹勯崫鍕典痪婵烇絽娲ら敃顏呬繆閹壆鐤€闁哄洨鍋涢悡鍌炴⒒娴e憡鎲搁柛锝冨劦瀹曞湱鎹勯搹瑙勬闂佺鎻梽鍕磻閹邦喚纾藉ù锝堢柈缂傛岸鏌涘鈧禍璺侯潖濞差亜妫橀柕澶涢檮閻濇棃姊洪崫銉ユ珡闁稿鎳橀獮鍫ュΩ閳轰胶鍔﹀銈嗗笒鐎氼參鍩涢幋鐘电<閻庯綆鍋掗崕銉╂煕鎼淬垹濮嶉柡宀€鍠撶划娆忊枎閸撗冩倯婵°倗濮烽崑娑氭崲濡櫣鏆﹂柕濞р偓閸嬫挸鈽夊▍顓т簼缁傛帡骞嗚濞撳鏌曢崼婵囶棤濠⒀屽墴閺屻倝鎮烽弶搴撴寖缂備緡鍠栭…鐑界嵁鐎n喗鏅滈悷娆欑稻鐎氳棄鈹戦悙鑸靛涧缂佽弓绮欓獮澶愭晸閻樿尙鐣鹃梺鍓插亖閸庢煡鎮¢弴鐐╂斀闁绘ɑ褰冮鎰版煕閿旇骞栫€殿喗鐓″缁樼瑹閳ь剙岣胯閹广垽宕奸妷銉э紮闂佸搫娲㈤崹娲磹閸ф鐓曟い顓熷灥娴滄牕霉濠婂嫮鐭掗柡宀€鍠撻埀顒傛暩鏋ù鐘崇矋閵囧嫰寮撮悢铏圭厒缂備浇椴哥敮妤呭箯閸涱垱鍠嗛柛鏇ㄥ幖閸ゆ帗淇婇悙顏勨偓銈夊矗閳ь剚绻涙径瀣妤犵偛顦甸獮姗€顢欓懖鈺婃Ч婵$偑鍊栧濠氬磻閹惧墎妫柣鎰靛墮閳绘洟鏌熼绛嬫當闁崇粯鎹囧畷褰掝敊閻e奔澹曢梻鍌欐祰濡椼劎绮堟笟鈧垾锕傛倻閽樺)銉ッ归敐鍥┿€婃俊鎻掔墛娣囧﹪顢涘☉姘辩厒闂佸摜濮撮柊锝夊箖妤e啫鐒洪柛鎰硶閻绻涙潏鍓у埌濠㈢懓锕よ灋婵犲﹤瀚弧鈧梺姹囧灲濞佳勭閳哄懏鐓欐繛鑼额唺缁ㄧ晫绱掓潏鈺佷槐闁糕斁鍋撳銈嗗笂闂勫秵绂嶅⿰鍕╀簻闁规壋鏅涢悞鐑樹繆椤栨浜鹃梻鍌欐祰椤曟牠宕抽婊勫床婵犻潧顑呴弰銉╂煃瑜滈崜姘跺Φ閸曨垰绠抽柟瀛樼箥娴犻箖姊洪幎鑺ユ暠閻㈩垽绻濆璇测槈濮橆偅鍕冮梺纭咁潐閸旀洟藟濠靛鈷戦梺顐ゅ仜閼活垶宕㈤崫銉х<妞ゆ梻鏅幊鍥煏閸℃洜顦﹂柍璇查叄楠炲洭顢欓崜褎顫岄梻鍌欑閹测€趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆戭槮婵犫偓闁秴纾婚柟鍓х箑缂傛碍绻涢崱妯诲濠㈣泛饪村ḿ鈺呮煠閸濄儲鏆╅柛姗€浜堕弻锝嗘償椤栨粎校闂佺ǹ顑呴幊鎰閸涘﹤顕遍悗娑欋缚閸樼敻鎮楅悷鏉款伀濠⒀勵殜瀹曠敻宕堕埞鎯т壕閻熸瑥瀚粈鍫ユ煕韫囨棑鑰块柕鍡曠铻i悶娑掑墲閺佺娀姊虹拠鈥崇€婚柛灞惧嚬濡粍绻濋悽闈浶ラ柡浣告啞閹便劑寮堕幊銊︽そ閺佸啴宕掑鎲嬬串闂備礁澹婇悡鍫ュ磻閸℃瑧涓嶅Δ锝呭暞閻撴瑩鎮楀☉娆嬬細缂佺姵锕㈤弻锛勨偓锝庝簻閺嗙喓绱掓潏銊ユ诞闁糕斁鍋撳銈嗗笒閸婄敻宕戦幘缁樻櫜閹肩补鍓濋悘宥夋⒑缂佹ɑ灏柛鐔跺嵆楠炲绮欐惔鎾崇墯闂佸壊鍋呯换鍕囪閳规垿鎮欓弶鎴犱桓濠殿喗菧閸旀垿骞嗗畝鍕耿婵$偞娲栫紞濠囧极閹版澘閱囬柣鏃傝ˉ閸嬫捇宕橀鐣屽幗闂佸湱鍎ら崺濠囩叕椤掑嫭鐓涚€光偓閳ь剟宕版惔銊ョ厺闁规崘顕ч崹鍌涖亜閺冨倹娅曞ù婊勫姍濮婄粯鎷呴崨闈涚秺椤㈡牠宕卞☉妯碱唶闂佸綊妫跨粈渚€鎮¢垾鎰佺唵閻犲搫鎼ˇ顒勬煕鐎n偅宕岀€规洜鍏橀、姗€鎮欓幇鈺佸姕闁靛洤瀚伴弫鍌炲垂椤旇偐銈繝娈垮枛閿曘儱顪冩禒瀣摕闁告稑鐡ㄩ崐鐑芥煠閼圭増纭炬い蹇e弮濮婃椽宕ㄦ繛鎺濅邯楠炲鏁嶉崟顒€搴婂┑鐐村灟閸ㄥ湱鐥閺岀喓鈧數枪娴犳粓鏌$€n剙孝妞ゎ亜鍟存俊鍫曞礃閵娧傜棯闂備焦瀵уú蹇涘垂瑜版帗鍋╅柣鎴犵摂閺佸啴鏌ㄩ弴妤€浜鹃柛鐑嗗灦閹嘲饪伴崘顏嗕紘缂備緡鍣崢钘夘嚗閸曨剛绠鹃柣鎰靛墯閺夋悂姊洪崷顓炲妺濠电偛锕ら悾鐑藉箛閺夎法顔掔紓鍌欑劍閿氶柍褜鍓欏ḿ锟犲蓟閵娾晛绫嶉柍褜鍓欓悾宄拔熺紒妯哄伎闂佹儳娴氶崑鍛村矗韫囨柧绻嗘い鏍ㄦ皑娴犮垽鏌i幘鏉戝闁哄矉缍侀獮妯虹暦閸モ晩鍟嬮梻浣告惈閺堫剟鎯勯鐐叉槬闁告洦鍨扮粈鍐煃閸濆嫬鏋ゆ俊鑼跺煐娣囧﹪鎮欓鍕ㄥ亾瑜忛幏瀣晲閸℃洜绠氶梺鎼炲労閸撴瑩鎮為崹顐犱簻闁瑰搫妫楁禍鎯р攽閻橆偄浜鹃柡澶婄墑閸斿孩绂掑顓濈箚闁绘劦浜滈埀顑惧€濆畷銏$附缁嬪灝绨ラ梺鍝勮閸庢煡宕戦埡鍛厽闁硅揪绲借闂佸搫鎳忛悡锟犲蓟濞戙垹唯妞ゆ牜鍋為宥夋⒑閸涘﹥绀€闁哥喐娼欓~蹇涙惞閸︻厾鐓撻梺鍦圭€涒晠骞忛崡鐑嗘富闁靛牆鍟俊濂告煙閸愯尙绠崇紒顔碱儏椤撳吋寰勬繝鍕毎婵$偑鍊ら崗姗€鍩€椤掆偓绾绢厾绮斿ú顏呯厸濞达絿鎳撴慨宥団偓瑙勬磸閸旀垿銆佸▎鎾崇闁稿繗鍋愰弳顓㈡⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介幃銏ゆ惞闁稓鐟濋梻浣告惈缁嬩線宕㈡總鍛婂珔闁绘柨鍚嬮悡銉︾節闂堟稒锛嶆俊鎻掔秺閺屾稒绻濋崟顐㈠箣闂佸搫鏈粙鎴﹀煝鎼淬倗鐤€闁挎繂妫岄弸鏃€绻濈喊妯活潑闁稿鎳樺畷褰掑垂椤曞懏缍庡┑鐐叉▕娴滄繈鎮炴繝姘厽闁归偊鍨伴拕濂告倵濮橆偄宓嗛柡灞剧☉铻g紓浣姑埀顒佸姍閺屸€崇暆鐎n剛袦濡ょ姷鍋炵敮锟犲箖濞嗘挻鍋ㄩ柛顭戝亝椤旀捇姊虹拠鎻掝劉妞ゆ梹鐗犲畷鎶筋敋閳ь剙鐣峰⿰鍫熷亜濡炲瀛╁▓楣冩⒑閸︻厼鍔嬮柛鈺佺墕宀e潡鍩¢崨顔惧弳濠电娀娼уΛ娆撍夐悩缁樼厱婵炲棗绻愰弳鐐电磼缂佹ḿ绠撻柍缁樻崌瀹曞綊顢欓悾灞煎闂傚倷鑳堕、濠傗枍閺囥垹绠伴柛婵勫劚瀵煡姊绘担铏瑰笡閺嬵亝銇勯弴鍡楁噹椤ユ艾鈹戦悩宕囶暡闁绘挻鐟╅弻鐔碱敍閸℃鍣洪柟鎻掑悑缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠傤嚕鐠囨祴妲堟俊顖炴敱椤秴鈹戦绛嬫當闁绘锕顐c偅閸愨斁鎷洪梻鍌氱墐閺呮繄绮欐繝姘厵妞ゆ梻鍘ч埀顒€鐏濋锝嗙節濮橆厽娅滈梺绯曞墲閿氶柛鏂挎嚇濮婃椽妫冨☉姘鳖唺婵犳鍠楅幐鍐差嚕缁嬪簱鏋庨柟鎯ь嚟閸樹粙姊虹紒妯忣亪宕幐搴㈠弿濠㈣埖鍔栭悡鏇㈡煟濡櫣锛嶅褏鏁搁埀顒冾潐濞叉ê顪冩禒瀣槬闁逞屽墯閵囧嫰骞掑澶嬵€栨繛瀛樼矋缁捇寮婚悢琛″亾閻㈢櫥瑙勭濠婂嫨浜滈柡鍥╁枔閻鏌曢崶褍顏柡浣稿暣瀹曟帡濡堕崱鈺傤棝缂傚倸鍊峰ù鍥ㄣ仈閹间礁绠伴柟闂寸贰閺佸洤鈹戦崒婧撶懓顪冮挊澹濆綊鏁愰崵鍊燁潐缁旂喐鎯旈妸锔规嫽婵炶揪绲肩拃锕傚绩閻楀牏绠鹃柛娑卞枟缁€瀣煙椤斻劌娲﹂崑鎰版偣閸ヮ亜鐨洪柣銈呮喘濮婅櫣绱掑Ο鏇熷灥椤啴宕稿Δ鈧弸渚€鏌涢埄鍐姇闁绘挻娲熼弻鐔兼焽閿曗偓閺嬫稑霉濠婂牏鐣洪柡宀嬬畵楠炲鈹戦幇顓夈劎绱撴担浠嬪摵闁圭懓娲ら悾鐑藉箳閹存梹鐎婚梺鐟扮摠缁诲倿鈥栨径鎰拻濞达絽鎲¢崯鐐烘煕閺冣偓濞茬喖鍨鹃敃鍌涘€婚柣锝呰嫰缁侊箓妫呴銏″缂佸甯″鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋呯粙鍫ュ磻閹惧瓨濯撮柤鍙夌箖濡啫鐣烽妸鈺婃晩闂傚倸顕惄搴ㄦ⒒閸屾瑧鍔嶉柛搴$-閹广垽骞囬濠呪偓鍧楁⒑椤掆偓缁夌敻宕戦崒鐐村€甸柨婵嗛閺嬬喖鏌嶉柨瀣伌闁诡喖鍢查埢搴ょ疀閹垮啩鐥梻浣呵圭€涒晠銆冩繝鍥ц摕婵炴垯鍨规儫闂侀潧锛忓鍥╊槸缂傚倸鍊风欢锟犲窗閺嶎厽鍋嬪┑鐘插瀹曟煡鏌涘☉鍗炲箰闁哄娴风槐鎺楊敍濞戞凹鏆$紓浣虹帛缁诲牓骞冩禒瀣棃婵炴垶顨嗛崟鍐╃節閻㈤潧浠滈柛姘儔閹兘鍩℃担鐑樻闂侀潧锛忛埀顒勫磻閹剧粯鏅查幖绮瑰墲閻忓秹姊洪幖鐐测偓鏇㈡嚐椤栨繄浜欓梻浣瑰缁诲倿骞婃惔銊ユ辈婵炲棙鍨圭壕濂告煟濮椻偓濞佳囧几濞戙垺鐓涢悘鐐靛枎濡盯鎮块埀顒勬⒑閹稿海绠撻柟鍐茬Ф閼洪亶宕楅懖鈺冪槇濠电偛鐗嗛悘婵嬫倶閿熺姵鐓欓柛娑橈工閳绘洟鏌e☉鍗炴珝鐎殿喕绮欓垾鏍Ψ閵夆晛寮板銈冨灪椤ㄥ﹪宕洪埀顒併亜閹烘垵顏╅柣鎺戠仛閵囧嫰骞掑鍥у缂備讲鍋撻柍褜鍓熷鍝勭暦閸モ晛绗¢梺鍦嚀濞差厼顕i锕€绠荤紓浣股戝▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹128.00闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍡忔瀻闊洦娲樺▓楣冩⒑閸濆嫷妲哥紒銊ュ船鍗遍柛顐ゅ枑閸欏繑鎱ㄥΔ鈧Λ妤€顕i悙顒傜闁兼祴鏅涢弸娑欐叏婵犲懏顏犻柟鐟板婵℃悂濡烽敂鎯х稈闂傚倷鑳堕幊鎾诲吹閺嶎厼绠柨鐕傛嫹
孙志忠

教授

数学学院

计算数学系


电话:
**

邮箱:
zzsun@seu.edu.cn

地址:
东南大学九龙湖校区图书馆北楼

邮编:
211189




基本信息
研究成果
项目与荣誉
社会兼职
孙志忠,男,1963年3月生。1990年至今在东南大学数学学院任教。 现为教授(2级),博士生导师。江苏省高校“青蓝工程”中青年学术带头人。1997年1月起至2013年11月担任计算数学教研室主任。1998年4月至2014年4月任东南大学数模竞赛总教练。1998年起担任全校工科硕士研究生学位课程《数值分析》课程负责人。
1990年至今在东南大学数学学院任教。1990年10月任讲师。1994年12月任副教授。1998年4月任教授。1995年5月被批准为硕士生导师。2004年7月被批准为博士生导师。主讲《偏微分方程数值解》、《计算方法》、《非线性发展法方程的数值方法》、《数值分析》等课程。专业为计算数学与科学工程计算,研究方向为偏微分方程数值解法中的差分方法理论。主持完成国家自然科学基金项目4项和江苏省自然科学基金项目1项。 参与完成国家基金项目2项。正在主持国家自然科学基金项目一项。在《SIAM J. Numer. Anal.》、《SIAM Journal on Scientific Comput.》,《Numer. Math.》、《Math. Comput.》、《J. Comput. Physics》、《J. Scientific Comput.》,《Appl. Numer. Math.》、《Numer. Methods Partial Differential Eqs》、《J. Comput. Appl. Math.》、《J. Comput. Math.》、《Sci. China Math.》、《计算数学》、《应用数学学报》、《高校计算数学学报》等国内外学术刊物上发表研究论文100余篇。出版专著4部,教材6部。1997年9月开始指导研究生。已指导毕业硕士研究生29名,指导毕业博士研究生10名。
1984年在南京大学数学系获得理学学士学位。1987年在南京大学数学系获得理学硕士学位。 1990年在中国科学院计算中心(现为计算数学与科学工程计算研究所)获得理学博士学位。



(I) 教材和专著+(II) 学术论文


(I) 教材和专著


23.孙志忠,高广花,分数阶微分方程的差分方法(第二版),科学出版社, ISBN978-7-03-066978-0,2021.01

22.Zhi-zhong Sun,Gunghua Sun,Fractional Differential Equations. Finite Difference Methods, Science Press, Beijing & de Gruyter, Berlin/Boston, XV+380 pp., 2020.08, ISBN 978-3-11-061517-3


21.Xuan Zhao, Zhi-Zhong Sun, Time-fractional derivatives.Handbook of fractional calculus with applications. Vol. 3,23–48,De Gruyter, Berlin,2019.x+349 pp. ISBN:
978-3-11-057106-6

20. 孙志忠,非线性发展方程的差分方法,科学出版社,2018年8月,
ISBN978-7-03-058087-0
19. 曹婉容,杜睿, 吴宏伟,孙志忠, 数值分析试题解析,东南大学出版社,
2017年8月(第一版), ISBN 978-7-5641-7348-7
18. 孙志忠,高广花,分数阶微分方程的差分方法,科学出版社,2015年8月,
ISBN978-7-03-045472-0

17.孙志忠,吴宏伟,曹婉容, 数值分析全真试题解析(2009-2014),
东南大学出版社,2014年7月(第一版),ISBN 978-7-5641-5057-0
16. You-lan Zhu, Xiaonan Wu, I-Liang Chern and Zhi-zhong Sun,Derivative Securities and Difference Methods (Second edition, Springer Finance),
ISBN 978-1-4614-7305-3, 2013

15 孙志忠,吴宏伟,曹婉容, 数值分析全真试题解析(2007-2012),东南大学出版 社,2012年6月(第一版),ISBN 978-7-5641-3337-5

14. 孙志忠,偏微分方程数值解法(第二版),科学出版社,2012年3月,38万 字,ISBN 978-7-03-033770-2,科学出版社普通高等教育“十二五”规划教材

13.孙志忠,计算方法与实习学习指导与习题解析(第2版),东南大学出版社,2011年7 月, ISBN 978-7-5641-2903-3

12.孙志忠,吴宏伟,袁慰平,闻震初, 计算方法与实习(第5版),东南大学出版 社,2011 年7月,ISBN 978-7-5641- 2895-1

11. 孙志忠,袁慰平,闻震初。数值分析(第3版),东南大学出版社,
2011年2月,ISBN978-7-5641-2577-6

10. 孙志忠,吴宏伟,曹婉容, 数值分析全真试题解析(第二版),东南大学出版社,
2010年5月,ISBN 978-7-5641-2152-5

9. Zhi-zhong Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations
(偏微分方程数值解中的降阶法及其应用), Science Press, 2009,
ISBN978-7-03-024546-5

8. 孙志忠,吴宏伟,袁慰平,闻震初, 计算方法与实习( 第4版),东南大学出版社, 2005年12月, ISBN978-7-5641-0199-2

7 .孙志忠,计算方法典型例题分析(第2版),科学出版社,2005年8月,
ISBN 978-7-03-015640-2

6.孙志忠,计算方法与实习学习指导与习题解析,东南大学出版社,2005年1月,
ISBN 7-81089-831-0

5.孙志忠,偏微分方程数值解法,科学出版社,2005年1月,
ISBN 978-7-03-014403-4

4.孙志忠,数值分析全真试题解析,东南大学出版社,2004年7月22万字,
ISBN 978-7-8108-9629-0

3.孙志忠,袁慰平,闻震初,数值分析(第2版),东南大学出版社,2002年1月,
ISBN 7-81050-931-4

2. 孙志忠. 计算方法典型例题分析,科学出版社,2001年3月, ISBN7-03-008991-X

1. 袁慰平,孙志忠,吴宏伟,闻震初, 计算方法与实习(第3版) ,
东南大学出版社,2000年6月,ISBN 7-81050-828-8
(II) 学术期刊论文
2021



149.Xuping Wang,Qifeng Zhang,Zhi-zhong Sun,The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation,Advances in Computational Mathematics,accepted on 18 Jan 2021

148.Rui-lian Du, Zhi-zhong Sun,A fast temporal second-order compact ADI scheme for time fractional mixed diffusion and wave equation,East Asian Journal on Applied Mathematics,accepted on 9Jan 2021


147. Rui-lian Du, Zhi-zhong Sun,Hong Wang,Temporal second-order finite difference schemesfor variable-order time-fractional wave equations, SINUM, 2021
(accepted in Nov.2020)


146. Xuping Wang,Zhi-zhong Sun,A second order convergent difference scheme
for the initial-boundary value problem of Korteweg-de Vires equation,Numerical
Methods for Partial Differential Equations,2021, DOI: 10.1002/num.22646

145. Rui-lian Du, Zhi-zhong Sun, Temporal second-order difference methods for solving multi-term time fractional mixeddiffusion and wave equations,Numerical
Algorithms,2021,DOI: 10.1007/s11075-020-01037-x

144.Qifeng Zhang , Yifan Qin , Xuping Wang , Zhi-zhong Sun,The study of exact and numerical solutions of the generalized viscous Burgers’ equation, Applied Mathematics Letters,
2021, 112:106719

143. Hong Sun, Zhi-zhong Sun, A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation, Numerical Algorithms,
2021,86(2), 761-797


2020

142. Qifeng Zhang, Xuping Wang, Zhi-zhong Sun, The pointwise estimates of a conservative difference scheme for the Burgers' equation, Numerical Methods
for Partial Differential Equations, 2020, 36: 1611–1628

141. Jin-ye Shen,Changpin Li,Zhi-zhong Sun,An H2N2 interpolation for Caputo derivative with order in (1, 2) and its application to time fractional wave equation in more
than one space dimension,Journal of Scientific Computing,2020, 83:38

140. Ruilian Du, Anatoly A. Alikhanov, Zhi-ZhongSun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Computers & Mathematics with Applications, 2020,79( 1015) : 2952-2972

139. Z.-Z. Sun, C. Ji and R. Du, A new analytical technique of the L-typedifference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Applied Mathematics Letters,2020, 102: 106115


138. Jin-ye Shen,Xu-ping Wang,Zhi-zhong Sun,The conservation and convergence of two finite difference schemes for Korteweg-de Vries equations with the initial and boundary value conditions,Numer. Math. Theor. Meth. Appl.,2020,13(1):253-280

137.Jin-Ye Shen,Zhi-Zhong Sun,Two-level linearized and local uncoupled difference schemes for the two-component evolutionary Korteweg-de Vries system,Numerical Methods for Partial Differential Equations,2020,36: 5–28.
2019

136.Cui-cui Ji,Weizhong Dai,Zhi-zhong Sun,Numerical schemes for solving the time-fractional dual-phase-lagging heat conduction model in a double-layered nanoscale thin film,Journal of Scientific Computing ,2019, 81: 1767–1800

135. Xuping Wang, Zhizhong Sun,A Compact Difference Scheme for Multi-Point Boundary Value Problems of Heat Equations, Communications on Applied Mathematics and Computation,
2019,1(4):545–563

134. Jinye Shen, Zhi-zhong Sun, Wanrong Cao,A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation,Applied Mathematics and Computation,2019,361:752–765

133.Hong Sun, Zhi-zhong Sun and Rui Du,A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation,Numer. Math. Theor. Meth. Appl. ,2019,12:1168-1190.
132. Hong Sun, Xuan Zhao and Zhi-zhong Sun, The temporal second order difference schemes based onthe interpolation approximationfor the time multi-term fractional wave equation, J Sci Comput,2019, 78:467–498

2018
131. Jin-ye Shen, Zhi-zhong Sun, Rui Du, Fast finite difference schemes for the time-fractional diffusion equation with a weak singularityat the initial time, Asian Journal of Applied Mathematics,East Asian Journal on Applied Mathematics,2018, 8(4): 834-858
130.Zhi-Zhong Sun, Jiwei Zhang, Zhimin Zhang, The optimal error estimate for the numerical computation of the time fractional Schrodinger equation on an unbounded domain, Asian Journal on Applied Mathematics, 2018, 8(4): 634-655
129. Cui-cui Ji,Weizhong Dai,Zhi-zhong Sun,Numerical method for molving the time-fractional dual-phase-lagging heat conduction equation with the temperature-tump boundary condition,J Sci Comput,2018,75: 1307–1336

128. Cui-cui Ji; Rui Du; Zhizhong Sun,Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives,International Journal of Computer Mathematics, 2018,95(1): 255-277
127. Yun Zhu,Zhi-zhong Sun,A high order difference scheme for the space and time fractional Bloch-Torrey equation,Comput. Methods Appl. Math., 2018, 18(1): 147-164
2017
126. Y. Yan, Z. Z. Sun, J. W. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order Scheme. Communications in Computational Physics, 2017, 22(4), 1028-1048.

125. Cui-cui Ji, Zhi-zhong Sun, An unconditionally stable and high-order convergent difference scheme for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, NumericalMathematics: Theory, Methods and Applications. 2017,11(3),597-614

124.Guanghua Gao, Anatoly A. Alikhanov, Zhi-zhong Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations,Journal of Scientific Computing,2017,73(1), 93-121
123. Zhaopeng Hao, G. Lin, Zhi-Zhong Sun,A high-order difference scheme for the fractional sub-diffusion equation,International Journal of Computer Mathematics, 2017,90(2): 405-426

122.Guang-hua Gao, Zhi-zhong Sun, Two difference schemes for solving the one-dimensionaltime distributed-order fractional wave equations,Numer Algor, 2017,74: 675-697
121. Hong Sun, Zhi-zhong Sun, Weizhong DaiA second-order finite difference scheme for solving the dual-phase-lagging equation in a double-layered nanoscale thin film, Numer Methods Partial Differential Eq,2017,33: 142–173
120. Zhao-peng Hao, Zhi-zhong Sun,A linearized high-order difference schemefor the fractional Ginzburg–Landau equation,Numer Methods Partial Differential Eq,2017, 33: 105–124
2016?
119. Guang-hua Gao,Zhi-zhong Sun,Two alternating direction implicit difference schemes
for solving the two-dimensional time distributed-order wave equations,J Sci Comput, 69(2):
506-531


118.Du, Rui; Hao, Zhao-peng; Sun, Zhi-zhong, Lubich second-order methods for distributed-order time-fractional differential equations with smooth solutions. East Asian J. Appl. Math., 6(2): 131–151.
117.Sun, Hong; Sun, Zhi-Zhong; Gao, Guang-Hua, Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differential Equations 32?(2016),?no. 3, 970–1001.
116. Sun, Hong; Sun, Zhi-zhong; Gao, Guang-hua, Some high order difference schemes for the space and time fractional Bloch-Torrey equations. Appl. Math. Comput. 281?(2016),?356–380.
115. Ren, Jincheng; Sun, Zhi-zhong; Dai, Weizhong, New approximations for solving the Caputo-type fractional partial differential equations. Appl. Math. Model. 40?(2016),?no. 4, 2625–2636.
114.Gao, Guang-hua; Sun, Zhi-zhong, Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66?(2016),?no. 3, 1281–1312.
113. Ji, Cui-cui; Sun, Zhi-zhong; Hao, Zhao-peng, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci. Comput. 66?(2016),?no. 3,1148–1174.

112. Gao, Guang-hua; Sun, Zhi-zhong, Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differential Equations 32?(2016),?no. 2, 591–615.
111. Hao, Zhaopeng; Fan, Kai; Cao, Wanrong; Sun, Zhizhong, A finite difference scheme for semilinear space-fractional diffusion equations with time delay. Appl. Math. Comput. 275?(2016),?238–254.
2015
110.Cui, Jin; Sun, Zhi Zhong; Wu, Hong Wei, A highly accurate and conservative difference scheme for the solution of a nonlinear Schr?dinger equation. (Chinese) Numer. Math. J. Chinese Univ. 37?(2015),?no. 1, 31–52.
109. Cao, HaiYan; Sun, ZhiZhong, Two finite difference schemes for the phase field crystal equation. Sci. China Math. 58?(2015),?no. 11, 2435–2454.
108. Du, Rui; Sun, Zhi-zhong; Gao, Guang-hua, A second-order linearized three-level backward Euler scheme for a class of nonlinear expitaxial growth model. Int. J. Comput. Math. 92?(2015),?no. 11, 2290–2309.
107.Sun, Hong; Du, Rui; Dai, Weizhong; Sun, Zhi-zhong, A high order accurate numerical method for solving two-dimensional dual-phase-lagging equation with temperature jump boundary condition in nanoheat conduction. Numer. Methods Partial Differential Equations 31?(2015),?no. 6, 1742–1768.
106.Ji, Cui-cui; Sun, Zhi-zhong The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation. Appl. Math. Comput. 269?(2015),?775–791.
105.Ren, Jincheng; Sun, Zhi-Zhong, Efficient numerical solution of the multi-term time fractional diffusion-wave equation. East Asian J. Appl. Math. 5?(2015),?no. 1, 1–28.
104.Gao, Guang-hua; Sun, Hai-wei; Sun, Zhi-zhong, Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298?(2015),?337–359.
103.Ji, Cui-cui; Sun, Zhi-zhong A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64?(2015),?no. 3, 959–985.
102. Zhao, Xuan; Sun, Zhi-zhong; Karniadakis, George Em, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293?(2015),?184–200.
101.Hao, Zhao-Peng; Sun, Zhi-Zhong; Cao, Wan-Rong, A three-level linearized compact difference scheme for the Ginzburg-Landau equation. Numer. Methods Partial Differential Equations 31?(2015),?no. 3, 876–899.
100.Gao, Guang-hua; Sun, Zhi-zhong Two, alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69?(2015),?no. 9,926–948.
99.Sun, Hong; Sun, Zhi-zhong, On two linearized difference schemes for Burgers' equation. Int. J. Comput. Math. 92?(2015),?no. 6, 1160–1179.
98.Ren, Jincheng; Sun, Zhi-zhong, Maximum norm error analysis of difference schemes for fractional diffusion equations. Appl. Math. Comput. 256?(2015),?299–314.
97. Zhao, Xuan; Sun, Zhi-Zhong, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62?(2015),?no. 3, 747–771.
96. Hao, Zhao-peng; Sun, Zhi-zhong; Cao, Wan-rong, A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281?(2015),?787–805.
95. Qiao, Zhonghua; Sun, Zhi-Zhong; Zhang, Zhengru, Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comp. 84?(2015),?no. 292, 653–674.
94.Gao, Guang-Hua; Sun, Hai-Wei; Sun, Zhi-Zhong, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280?(2015),?510–528.

2014
93.Zhao, Xuan; Sun, Zhi-zhong; Hao, Zhao-peng, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schr?dinger equation. SIAM J. Sci. Comput. 36?(2014),?no. 6, A2865–A2886.
92. Ren, Jincheng; Sun, Zhi-zhong, Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations. East Asian J. Appl. Math. 4?(2014),?no. 3, 242–266.
91.Cao, Hai-Yan; Sun, Zhi-Zhong; Zhao, Xuan, A second-order three-level difference scheme for a magneto-thermo-elasticity model. Adv. Appl. Math. Mech. 6?(2014),?no. 3, 281–298.
90.Sun, Zhi-Zhong; Dai, Weizhong, A new higher-order accurate numerical method for solving heat conduction in a double-layered film with the Neumann boundary condition. Numer. Methods Partial Differential Equations 30(2014),?no. 4, 1291–1314.
89.Zhang, Ya-nan; Sun, Zhi-zhong; Liao, Hong-lin, Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265?(2014),?195–210.
88.Cao, Hai-Yan; Sun, Zhi-Zhong; Gao, Guang-Hua, A three-level linearized finite difference scheme for the Camassa-Holm equation. Numer. Methods Partial Differential Equations 30?(2014),?no. 2, 451–471.
87.Zhang, Ya-nan; Sun, Zhi-zhong, Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation. J. Sci. Comput. 59?(2014),?no. 1, 104–128.
86.Gao, Guang-hua; Sun, Zhi-zhong; Zhang, Hong-wei, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259?(2014),?33–50.
85. Ren, Jincheng; Sun, Zhi-zhong; Cao, Hai-yan, A numerical method for solving the nonlinear Fermi-Pasta-Ulam problem. Numer. Methods Partial Differential Equations 30?(2014),?no. 1, 187–207.

2013
84.Liao, Hong-Lin; Sun, Zhi-Zhong, A two-level compact ADI method for solving second-order wave equations. Int. J. Comput. Math. 90?(2013),?no. 7, 1471–1488.
83.Zhang, Ya-nan; Sun, Zhi-zhong; Wang, Ting-chun, Convergence analysis of a linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation. Numer. Methods Partial Differential Equations 29?(2013),no. 5, 1487–1503.
82.Gao, Guang-Hua; Sun, Zhi-Zhong, Compact difference schemes for heat equation with Neumann boundary conditions (II). Numer. Methods Partial Differential Equations 29?(2013),?no. 5, 1459–1486.
81.Zhu, You-lan; Wu, Xiaonan; Chern, I-Liang; Sun, Zhi-zhong, Derivative securities and difference methods. Second edition. Springer Finance. Springer, New York, 2013. xxii+647 pp. ISBN: 978-1-4614-7305-3; 978-1-4614-7306-0
80.Ren, Jincheng; Sun, Zhi-zhong, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56?(2013),?no. 2, 381–408.
79.Gao, Guang-hua; Sun, Zhi-zhong The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain. J. Comput. Phys. 236?(2013),?443–460.
78. Sun, Zhi-zhong; Zhang, Zai-bin, A linearized compact difference scheme for a class of nonlinear delay partial differential equations. Appl. Math. Model. 37?(2013),?no. 3, 742–752.
77. Ren, Jincheng; Sun, Zhi-zhong; Zhao, Xuan, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232?(2013),?456–467.
2012
76.Qiao, Zhonghua; Sun, Zhi-zhong; Zhang, Zhengru, The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Differential Equations 28?(2012),no. 6, 1893–1915.
75.Zhang, Ya-Nan; Sun, Zhi-Zhong; Zhao, Xuan, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50?(2012),?no. 3, 1535–1555.
74.Liao, Hong-Lin; Sun, Zhi-Zhong; Shi, Han-Sheng; Wang, Ting-Chun, Convergence of compact ADI method for solving linear Schr?dinger equations. Numer. Methods Partial Differential Equations 28?(2012),?no. 5, 1598–1619.
73.Gao, Guang-hua; Sun, Zhi-zhong; Zhang, Ya-nan, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231?(2012),?no. 7, 2865–2879.
72.Li, Juan; Sun, ZhiZhong; Zhao, Xuan, A three level linearized compact difference scheme for the Cahn-Hilliard equation. Sci. China Math. 55?(2012),?no. 4, 805–826.
71. Sun, Weiwei; Sun, Zhi-zhong Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120?(2012),?no. 1, 153–187.
70. Sun, Zhi-zhong; Wu, Xiaonan; Zhang, Jiwei; Wang, Desheng, A linearized difference scheme for semilinear parabolic equations with nonlinear absorbing boundary conditions. Appl. Math. Comput. 218?(2012),?no. 9, 5187–5201.
69.Gao, Guang-hua; Sun, Zhi-zhong, A finite difference approach for the initial-boundary value problem of the fractional Klein-Kramers equation in phase space. Cent. Eur. J. Math. 10?(2012),?no. 1, 101–115.

2011


68.Zhang, Ya-nan; Sun, Zhi-zhong, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230?(2011),?no. 24, 8713–8728.
67. Zhang, Yu-lian; Sun, Zhi-zhong, A second-order linearized finite difference scheme for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation. Int. J. Comput. Math. 88?(2011),?no. 16, 3394–3405.
66.Zhang, Ya-Nan; Sun, Zhi-Zhong; Wu, Hong-Wei, Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 49?(2011),?no. 6, 2302–2322.
65.Zhang, Jiwei; Sun, Zhizhong; Wu, Xiaonan; Wang, Desheng, Analysis of high-order absorbing boundary conditions for the Schr?dinger equation. Commun. Comput. Phys. 10?(2011),?no. 3, 742–766.
64.Zhao, Xuan; Sun, Zhi-zhong, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230?(2011),?no. 15, 6061–6074.
63. Liao, Hong-lin; Sun, Zhi-zhong, Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235?(2011),?no. 8, 2217–2233.
62. Gao, Guang-hua; Sun, Zhi-zhong, A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230?(2011),?no. 3, 586–595.
2010


61. Wang, Jialing; Sun, Zhizhong, A second order difference scheme for one-dimensional Stefan problem.Nanjing Daxue Xuebao Shuxue Bannian Kan 27?(2010),?no. 2, 218–229.
60.Zhang, Zai Bin; Sun, Zhi Zhong, A Crank-Nicolson scheme for a class of delay nonlinear parabolic differential equations. (Chinese) J. Numer. Methods Comput. Appl. 31?(2010),?no. 2, 131–140.
59. Du, R.; Cao, W. R.; Sun, Z. Z., A compact difference scheme for the fractional diffusion-wave equation.Appl. Math. Model. 34?(2010),?no. 10, 2998–3007.
58.Sun, Zhi-zhong; Zhao, Dan-dan, On the L∞ convergence of a difference scheme for coupled nonlinear Schr?dinger equations. Comput. Math. Appl. 59?(2010),?no. 10, 3286–3300.
57.Cao, Wan-Rong; Sun, Zhi-Zhong, Maximum norm error estimates of the Crank-Nicolson scheme for solving a linear moving boundary problem. J. Comput. Appl. Math. 234?(2010),?no. 8, 2578–2586.
56. Liao, Hong-Lin; Sun, Zhi-Zhong; Shi, Han-Sheng, Error estimate of fourth-order compact scheme for linear Schr?dinger equations. SIAM J. Numer. Anal. 47?(2010),?no. 6, 4381–4401.
55.Liao, Hong-Lin; Sun, Zhi-Zhong, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differential Equations 26?(2010),?no. 1, 37–60.

2009
54.Liao, Hong-Lin; Shi, Han-Sheng; Sun, Zhi-Zhong, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations. Sci. China Ser. A 52?(2009),?no. 11, 2362–2388.
53. Sun, Zhi-Zhong, Compact difference schemes for heat equation with Neumann boundary conditions.Numer. Methods Partial Differential Equations 25?(2009),?no. 6, 1320–1341.
52.Sun, Zhi-Zhong; Wu, Xiao-Nan A difference scheme for Burgers equation in an unbounded domain.Appl. Math. Comput. 209?(2009),?no. 2, 285–304.
51.Ye, Chao-rong; Sun, Zhi-zhong, A linearized compact difference scheme for an one-dimensional parabolic inverse problem. Appl. Math. Model. 33?(2009),?no. 3, 1521–1528.
50.Xu, Pei-Pei; Sun, Zhi-Zhong A second-order accurate difference scheme for the two-dimensional Burgers' system. Numer. Methods Partial Differential Equations 25?(2009),?no. 1, 172–194.
2008


49.Wang, Jialing; Sun, Zhizhong, A finite difference method for the heat equation with a nonlinear boundary condition. Numer. Math. J. Chinese Univ. 30?(2008),?no. 4, 289–309.
48. Han, Houde; Sun, Zhi-zhong; Wu, Xiao-nan, Convergence of a difference scheme for the heat equation in a long strip by artificial boundary conditions. Numer. Methods Partial Differential Equations 24?(2008),?no. 1, 272–295.
47.Cao, Hai-yan; Sun, Zhi-zhong, A second-order linearized difference scheme for a strongly coupled reaction-diffusion system. Numer. Methods Partial Differential Equations 24?(2008),?no. 1, 9–23.
2007


46. Sun, Zhi Zhong; Wu, Jing Yu, Numerical simulation of a class of coupled parabolic equations in geoscience. (Chinese) Acta Math. Appl. Sin. 30?(2007),?no. 6, 1097–1116.
45.Liu, Jianming; Sun, Zhizhong Finite difference method for reaction-diffusion equation with nonlocal boundary conditions. Numer. Math. J. Chin. Univ. (Engl. Ser.) 16?(2007),?no. 2, 97–111.
44. Ye, Chao-rong; Sun, Zhi-zhong, On the stability and convergence of a difference scheme for an one-dimensional parabolic inverse problem. Appl. Math. Comput. 188?(2007),?no. 1, 214–225.
43.Li, Wei-Dong; Sun, Zhi-Zhong; Zhao, Lei, An analysis for a high-order difference scheme for numerical solution to utt=A(x,t)uxx+F(x,t,u,ut,ux). Numer. Methods Partial Differential Equations 23?(2007),?no. 2, 484–498.
42.Li, Fu-le; Sun, Zhi-zhong, A finite difference scheme for solving the Timoshenko beam equations with boundary feedback. J. Comput. Appl. Math. 200?(2007),?no. 2, 606–627.
41. Sun, Zhi-zhong; Zhao, Lei; Li, Fu-Le, A difference scheme for a parabolic system modelling the thermoelastic contacts of two rods. Numer. Methods Partial Differential Equations 23?(2007),?no. 1, 1–37.

2006


40.Jiang, Mingjie; Sun, Zhizhong, Second-order difference scheme for a nonlinear model of wood drying process. J. Southeast Univ. (English Ed.) 22?(2006),?no. 4, 582–588.
39. Sun, Zhi-zhong, The stability and convergence of an explicit difference scheme for the Schr?dinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 219?(2006),?no. 2, 879–898.
38.Li, Xue Ling; Sun, Zhi Zhong, A compact alternate direct implicit difference method for reaction-diffusion equations with variable coefficients. (Chinese) Numer. Math. J. Chinese Univ. 28?(2006),?no. 1, 83–95.
37.Li, Wei-Dong; Sun, Zhi-Zhong, An analysis for a high-order difference scheme for numerical solution to uxx=F(x,t,u,ut,ux). Numer. Methods Partial Differential Equations 22?(2006),?no. 4, 897–919.
36.Zhao, Lei; Sun, Zhi-zhong; Liu, Jian-ming Numerical solution to a one-dimensional thermoplastic problem with unilateral constraint. Numer. Methods Partial Differential Equations 22?(2006),?no. 3, 744–760.
35. Sun, Zhi-zhong; Wu, Xiaonan, The stability and convergence of a difference scheme for the Schr?dinger equation on an infinite domain by using artificial boundary conditions. J. Comput. Phys. 214?(2006),?no. 1, 209–223.
34.Sun, Zhi-zhong; Wu, Xiaonan, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56?(2006),?no. 2, 193–209.
2005
33.Sun, Zhi Zhong; Li, Xue Ling, A compact alternating direction implicit difference method for reaction diffusion equations. (Chinese) Math. Numer. Sin. 27?(2005),?no. 2, 209–224.
2004
32.Wu, Xiaonan; Sun, Zhi-Zhong, Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Numer. Math. 50?(2004),?no. 2, 261–277.
31. Sun, Zhi-zhong; Zhu, You-lan, A second order accurate difference scheme for the heat equation with concentrated capacity. Numer. Math. 97?(2004),?no. 2, 379–395.
30.Zhang, Ling-yun; Sun, Zhi-zhong, A second-order linearized difference scheme on nonuniform meshes for nonlinear parabolic systems with Neumann boundary value conditions. Numer. Methods Partial Differential Equations 20(2004),?no. 2, 230–247.
2003
29.Sun, Zhi-zhong; Shen, Long-Jun, Long time asymptotic behavior of solution of implicit difference scheme for a semi-linear parabolic equation. J. Comput. Math. 21?(2003),?no. 5, 671–680.
28.Zhang, Ling-Yun; Sun, Zhi-Zhong, A second-order linearized difference scheme on nonuniform meshes for nonlinear parabolic systems with Dirichlet boundary value conditions. Numer. Methods Partial Differential Equations 19(2003),?no. 5, 638–652.
27. Pan, Zhu Shan; Sun, Zhi Zhong, A second order difference scheme for a basic semiconductor equation with heat conduction. (Chinese) Numer. Math. J. Chinese Univ. 25?(2003),?no. 1, 60–73.


2001
26.Sun, Zhi-Zhong, A high-order difference scheme for a nonlocal boundary-value problem for the heat equation. Comput. Methods Appl. Math. 1?(2001),?no. 4, 398–414.
25.Sun, Zhi-Zhong, An unconditionally stable and O(τ2+h4) order L∞ convergent difference scheme for linear parabolic equations with variable coefficients. Numer. Methods Partial Differential Equations 17?(2001),?no. 6, 619–631.
24. Wan, Zheng-su; Sun, Zhi-zhong, On the L∞ convergence and the extrapolation method of a difference scheme for nonlocal parabolic equation with natural boundary conditions. J. Comput. Math. 19?(2001),?no. 5, 449–458.


2000


23. Sun, Zhizhong, A note on finite difference method for generalized Zakharov equations. J. Southeast Univ. (English Ed.) 16?(2000),?no. 2, 84–86.
22.Sun, Zhizhong; Yang, Mei; Shi, Peihu; Chen, Shaobing, On linearized finite difference simulation for the model of nuclear reactor dynamics. Numer. Math. J. Chinese Univ. (English Ser.) 9?(2000),?no. 2, 159–174.
1998
21. Chen, Shaobing; Sun, Zhizhong, A class of second-order characteristic difference schemes for a model of population dynamics. J. Southeast Univ. (English Ed.) 14?(1998),?no. 2, 133–137.
20.Sun, Zhi-Zhong; Zhu, Qi-Ding, On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation.J. Comput. Appl. Math. 98?(1998),?no. 2, 289–304.
1997
19. Sun, Zhi Zhong, A second-order difference scheme for a model of oil deposits. (Chinese) Acta Math. Appl. Sinica 20?(1997),?no. 4, 551–558.
18.Sun, Zhizhong, On L∞ convergence of a linearized difference scheme for the Kuramoto-Tsuzuki equation. Nanjing Daxue Xuebao Shuxue Bannian Kan 14?(1997),?no. 1, 5–9.
1996


17.Sun, Zhizhong, On L∞ stability and convergence of fictitious domain method for the numerical solution to parabolic differential equation with derivative boundary conditions. J. Southeast Univ. (English Ed.) 12?(1996),?no. 2, 107–110.
16.Sun, Zhi Zhong, An unconditionally stable and second-order convergent difference scheme for the system of wave equations with heat conduction. (Chinese) Math. Numer. Sin. 18?(1996),?no. 2, 161–170.
15. Sun, Zhi-Zhong, A second-order accurate finite difference scheme for a class of nonlocal parabolic equations with natural boundary conditions. J. Comput. Appl. Math. 76?(1996),?no. 1-2, 137–146.
14.Sun, Zhi Zhong, A generalized box scheme for the numerical solution of the Kuramoto-Tsuzuki equation. (Chinese) J. Southeast Univ. 26?(1996),?no. 1, 87–92.
13.Sun, Zhizhong, A second-order convergent difference scheme for the initial-boundary value problem of superthermal electron transport equation. Nanjing Daxue Xuebao Shuxue Bannian Kan 13?(1996),?no. 1, 14–22.
12.Sun, Z. Z., A linearized difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Math. 14(1996),?no. 1, 1–7.
1995


11.Sun, Zhi Zhong, A second-order convergent difference scheme for the mixed initial-boundary value problems of a class of parabolic-elliptic coupled systems of equations. II. (Chinese) Math. Numer. Sinica 17?(1995),?no. 4,391–401.
10.Sun, Zhi Zhong, A second-order convergent difference scheme for the mixed initial-boundary value problems of a class of parabolic-elliptic coupled systems of equations. I. (Chinese) Math. Numer. Sinica 17?(1995),?no. 1, 1–12.
9.Sun, Zhizhong, Modified Crank-Nicolson scheme for the initial-boundary value problem of superthermal electron transport equation. J. Southeast Univ. (English Ed.) 11?(1995),?no. 2, 83–87.
8. Sun, Zhi Zhong, A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comp. 64?(1995),?no. 212, 1463–1471.
1994
7.Sun, Zhi-zhong, A new class of difference schemes for linear parabolic equations in 1-D. Chinese J. Numer. Math. Appl. 16?(1994),?no. 3, 1–20.
6.Sun, Zhi-Zhong, A class of second-order accurate difference schemes for solving quasilinear parabolic equations. (Chinese) Math. Numer. Sinica 16?(1994),?no. 4, 347–361.
5.Sun, Zhi-Zhong, A new class of difference schemes for solving linear parabolic differential equations.(Chinese) Math. Numer. Sinica?16 (1994), no. 2, 115--130; translation in Chinese J. Numer. Math. Appl. 16 (1994), no. 3, 1–20
4.Sun, Zhi-Zhong, On numerical solution to an elliptic-parabolic coupled system arising from the fluid-solute-heat flow through saturated porous media. Nanjing Daxue Xuebao Shuxue Bannian Kan 11?(1994),?no. 2, 126–135.
1993
3.Sun, Zhi-Zhong, On fictitious domain method for the numerical solution to heat conduction equation with derivative boundary conditions. J. Southeast Univ. (English Ed.) 9?(1993),?no. 2, 38–44.
2.Sun, Zhi-Zhong, A reduction of order method for numerically solving elliptic differential equations.(Chinese) J. Southeast Univ. 23?(1993),?no. 6, 8–16.
1989
1.Wu, Chi-kuang; Su, Yu-Cheng; Sun, Zhi-Zhong, Asymptotic method for singular perturbation problem of ordinary difference equations. Appl. Math. Mech. (English Ed.) 10 (1989), no. 3, 221–230; translated from Appl. Math. Mech.10 (1989), no. 3, 211--220(Chinese)









项目

6.纳米尺度多层薄膜热传导数学模型及其高精度数值算法. 批准号:**。2017年1月至2020年12月。
国家自然科学基金。(主持)
5. 空间分数阶偏微分方程高精度快速算法的研究. 批准号:**. 2013年1月至2016年12月。 国家
自然科学基金。(主持)
4. 分数阶偏微分方程初边值问题差分方法研究。批准号: **。2009年1月至2011年12月。 国家自然
科学基金。(主持)

3. 某些非线性发展方程高阶差分方法的研究,批准号: **。2005年1月至2007年12月。 国家自然
科学基金。(主持)
2. 高度非线性强耦合偏微分方程组差分模拟中的降价法理论。批准号:**。1999年1月至2001年
12月。国家自然科学基金。(主持)
1. 高度非线性强耦合偏微分方程组差分模拟中的降价法理论。批准号:BK97004。1999年1月至2001年
12月。江苏省自然科学基金。(主持)

荣誉
30. 2015—2016学年“东南大学中泰国立奖教金二等奖”。东南大学教育基金会。2016年6月。
29. 东南大学2014-2015年度教书育人、管理育人、服务育人积极分子称号, 东南大学工会委员会。2016年4
月。
28. 南京市第十一届自然科学优秀学术论文奖三等奖. (2015年12月)
获奖论文:高广花、孙志忠、张宏伟,A new fractional numerical differentiation formula to approximatethe
Caputo fractional derivative and its applications, Journal of Computational Physics,259 (2014) 33–50
27. 2015年度东南大学优秀博士论文指导教师 。2015年6月。
博士论文:赵璇《分数阶偏微分方程的高阶差分方法及其应用研究》
26. 2013年Journal of Computational Physics优秀审稿人。2014年6月。
25.介质成像的数学模型和数值实现,江苏省人民政府, 江苏科学技术奖,三等奖,排名2。2012年3月。

24. “大学生数学建模能力与创新人才培养的探索与实践” 获江苏省高等教育教学成果奖一等奖,江苏省教
育厅,排名3。2011年9月。
23. 2010—2011学年“东南大学中泰国立奖教金三等奖”。东南大学教育基金会。2011年6月。
22.“大学生数学建模能力与创新人才培养的探索与实践”获东南大学教学成果一等奖,排名3.
东南大学。 2011年5月。
21. 2008—2009学年“许国平林健忠奖教金”。东南大学教育基金会。2009年6月。
20. 江苏省高校“青蓝工程”青年学术带头人 。2006年。
19.中国计算数学学会2011年优秀青年论文竞赛优秀奖指导教师
获奖论文:廖洪林,孙志忠,史汉生,Error estimate of fourth-order compact scheme for linear Schr?dinger
equations.SIAM J. Numer. Anal.47 (2010), no. 6,4381--4401.
18. 东南大学优秀硕士论文指导老师。2008年8月。
硕士学位论文:曹海燕《一类非对称强耦合反应—扩散系统的二阶差分格式》
17. 江苏省优秀硕士论文指导老师。2009年10月。
硕士学位论文:徐沛沛《两类非线性偏微分方程的有限差分方法模拟》
16.2004—2005学年“林健忠奖教金”。东南大学教育基金会。2005年6月。
15.2004年度东南大学优秀教材将奖二等奖(排名2)。教材名称:《计算方法与实习》。2004年12月。
14.2004年度江苏省教学成果奖一等奖(排名6)。获奖成果:开展数学建模活动推进理工科数学课程体系
改革。2005年2月。
13.2004年度东南大学教学成果奖特等奖(排名3)。获奖成果:开展数学建模活动推进理工科数学课程体系
改革。2004年11月。
12. 2003年度东南大学教学工作优秀一等奖。2003年9月。
11. 2003年度东南大学优秀研究生教材奖(排名1)。教材名称:《数值分析》。
10. 江苏省研究生培养创新工程优秀研究生课程(排名1)。课程名称:《数值分析》。江苏省学位委员会, 
江苏省教育厅。2002年12月。
9. 江苏省本科生培养创新工程优秀课程群(排名4)。课程名称:《工科数学群》。江苏省学位委员会, 
江苏省教育厅。2002年6月。
8. 全国大学生数学建模竞赛优秀指导教师。全国大学生数学建模竞赛组委会。2001年12月。
7. 《计算方法与实习》教材2001年被评为全国优秀畅销书。中国书刊发行行业协会。2001年12月。
6. 1999-2000学年“东南大学—华为奖教金”。东南大学教育基金会。2000年6月。
5. 一九九九年全国大学生数学建模竞赛江苏赛区优秀教练员。江苏省教育委员会。1999年12月。
4. 1998年度东南大学教学工作优秀二等奖。1998年9月。
3. 1996年度东南大学教学工作优秀三等奖。1996年9月。
2. 1995-1996年度亿利达优秀青年教师奖。东南大学教育基金会。1996年6月。
1.1995年度东南大学教学工作优秀特别奖(排名3)。1995年9月。








全国“明天小小科学家”评审专家
全国青少年科技创新大赛初评专家
全国高考命题专家
国家基金项目评审专家
全国博士后基金评审专家
60多个中外科技期刊论文评审专家














相关话题/东南大学 数学学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 东南大学数学学院导师教师师资介绍简介-沈亮
    沈亮副教授数学学院基础数学系电话:邮箱:lshen@seu.edu.cn地址:东南大学数学学院邮编:210096基本信息研究成果项目与荣誉社会兼职1978年8月生于江苏南通。2006年4月博士毕业于东南大学数学系,随后留校工作。2009年8月至2010年9月获教育部留学基金委资助访问美国俄亥俄大学环 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-沈斌
    沈斌讲师数学学院基础数学系电话:邮箱:你懂的地址:图书馆北506邮编:211189基本信息研究成果项目与荣誉社会兼职主要从事微分几何中的Finsler几何及相关问题研究,也关心拓扑图论,几何分析等问题。2012.07-2012.12重庆理工大学数学与统计学院讲师2012.12-今东南大学数学系讲师2 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-石佩虎
    石佩虎副教授数学学院计算数学系电话:邮箱:sph2106@aliyun.com地址:邮编:基本信息研究成果项目与荣誉社会兼职石佩虎,1967年生,湖南省花垣县人,1993年7月至今来本校工作,主要从事教学和科研工作,现为数学学院副教授。今年来,主要为本科生和硕士生讲授课程有:“微分方程及应用”,“数 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-唐向东
    唐向东副教授数学学院基础数学系电话:邮箱:地址:邮编:基本信息研究成果项目与荣誉社会兼职基础数学专业,副教授,研究兴趣涉及环论,模论,半群代数理论及其应用,教学方面给本科生讲授过的课程包括几何与代数,线性代数,高等代数,近世代数,给研究生讲授的课程:工程矩阵理论,基础代数。 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-万颖
    万颖讲师数学学院系统科学系电话:邮箱:wanying1991seu@gmail.com地址:邮编:基本信息研究成果项目与荣誉社会兼职万颖,女,1991年生。2018年于东南大学获理学博士学位,随后在美国德克萨斯农工大学卡塔尔分校、新加坡南洋理工大学计算机科学与工程学院从事博士后研究。研究方向动态网络 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-吴云建
    吴云建副教授数学学院系统科学系电话:邮箱:yunjian_wu@163.com地址:邮编:基本信息研究成果项目与荣誉社会兼职2019-至今东南大学1.Wu,Yunjian(*),ParityResultsForBroken11-diamondPartitions,OPENMATHEMATICS,20 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-吴宏伟
    吴宏伟副教授数学学院计算数学系电话:邮箱:hwwu@seu.edu.cn地址:邮编:基本信息研究成果项目与荣誉社会兼职吴宏伟,1963年生,江苏无锡人。1984年7月到本校参加工作。现为数学系副教授,从事教学和科研工作。先后为本科生讲授《高等数学》,《线性代数》,《计算机原理》,《数值分析》,《微分 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-吴建专
    吴建专副教授数学学院统计与精算系电话:邮箱:jzwu@seu.edu.cn地址:邮编:基本信息研究成果项目与荣誉社会兼职吴建专,副教授。1989年9月至1996年4月,就读于哈尔滨工业大学数学系,获得理学学士和理学硕士学位。2009年1月获得东南大学数学系理学博士学位。1996年4月起在东南大学数学 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-吴昊
    吴昊副教授数学学院应用数学系电话:邮箱:地址:九龙湖图书馆5楼511邮编:基本信息研究成果项目与荣誉社会兼职本人从事常微分方程定性理论研究,着重关注正规形相关分支。05.9-06.7西班牙巴塞罗那CRM研究所博士后06.9-东南大学数学系教师96.9-00.7苏州大学本科学士00.9-05.7北京大 ...
    本站小编 Free考研考试 2021-02-16
  • 东南大学数学学院导师教师师资介绍简介-吴霞
    吴霞副教授数学学院基础数学系电话:邮箱:地址:邮编:基本信息研究成果项目与荣誉社会兼职研究方向:代数数论、代数K理论2008.6-至今东南大学数学系1999.9-2003.7南京师范大学数科院本科2003.9-2008.6南京大学数学系硕博连读1.X.Wu*,Y.Q.Chen,Noteonpower ...
    本站小编 Free考研考试 2021-02-16