删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南京信息工程大学计算机与软件学院导师教师师资介绍简介-顾彬

本站小编 Free考研考试/2021-03-28



其他栏目

English





个人简介 学习与工作经历:学习经历:2001-2005 南京航空航天大学,计算机科学与技术,本科;
2005-2007 南京航空航天大学,计算机科学与技术,硕士;
2007-2011 南京航空航天大学,计算机科学与技术,博士;
出国经历:2013.1-2015.1: 加拿大西安大略大学医学生物物理学系数字图像组,以及计算机科学系Charles X. Ling教授数据挖掘以及商业智能组做博士 后研究
2016.8-2017.8: 美国德克萨斯州立大学Arlington分校,Heng Huang组做博后
2017.9-2018.7: 美国匹兹堡大学,Heng Huang组做博后
工作经历:2010-至今: 南京信息工程大学计算机与软件学院,教授
荣誉职位:2020.7-至今 加拿大西安大略大学(世界排名200左右)计算机科学系,兼职教授(可以和Charles X. Ling院士联合招生)
社会兼职:IEEE member;
IEEE Transactionon Neural Networks and Learning Systems, Machine Learning, Neural Networks, Information Science, IEEE Transactions on Knowledge and Data Engineering 审稿人
研究领域和方向:研究兴趣主要是机器学习、商业智能分析以及医疗图像分析,具体包括机器学习中的优化方法(支持向量机的增量式学习、大数据学习、模型选择、稀疏化学习),代价敏感学习、引入先验知识的学习以及在商业智能以及医疗图像分析中的应用.

学生培介绍:
目前人工智能的发展之一是让计算机模拟人的经验学习能力。机器学习主要研究经验学习使得机器具备经验学习能力。目前机器学习在产业界得到空前的应用。我们目前主要对机器学习中主流算法进行理论研究,以及产业化应用。
实验室目前招收本科实习生、硕士以及博士生,欢迎对机器学习有兴趣的学生与我联系。适合本实验室的学生应具备的基本特征如下:
1.品行端正,诚实守信
2.对机器学习,人工智能有兴趣
3.能吃得了苦,坐得了板凳
注:编程,数学(线性代数,统计,优化理论),英语能力好是加分项,不是必需项。

学生成绩:
?恭喜施万里(博一学生)以第一作者完成的“Improved Penalty Method via Doubly Stochastic Gradients for Bilevel Hyperparameter Optimization”文章在人工智能顶级会议AAAI 2021录用。
?恭喜吴惠敏(研一学生)以第一作者完成的“Fast and Scalable Adversarial Training of Kernel SVM via Doubly Stochastic Gradients”文章在人工智能顶级会议AAAI 2021录用。
?恭喜施万里(研二学生)以第一作者完成的“Semi-Supervised Multi-Label Learning from Crowds via Deep Sequential Generative Model”文章在数据挖掘顶级会议KDD 2020 research track录用。
?恭喜施万里(研二学生)以第一作者完成的“Quadruply Stochastic Gradient Method for Large Scale Nonlinear Semi-Supervised Ordinal Regression AUC Optimization”文章在人工智能顶级会议AAAI 2020录用。
?恭喜翟周(研一学生)以第一作者完成的“Safe Sample Screening for Robust Support Vector Machine”文章在人工智能顶级会议AAAI 2020录用。
?恭喜耿祥(研二学生)在人工智能顶级会议IJCAI 2019发表论文,并成功完成talk汇报。
?恭喜施万里(研一学生)在人工智能顶级会议IJCAI 2019发表论文,并成功完成talk汇报。
?恭喜於舒扬(大二访问学生), 宁鲲鹏(大三访问学生)在数据挖掘顶级会议KDD 2019发表Research Track论文。


科研成果:
近年来主要承担的科研项目2016.1-2019.122016.1-2019.12针对来自众包的大数据支持向量机研究,国家自然科学基金面上项目,主持
2013.1-2015.122013.1-2015.12精确的增量式支持向量机的研究,国家自然科学基金青年项目,主持.
2012.2-2013.122012.2-2013.12精确的增量式支持向量机的研究与应用,南京信息工程大学科研启动基金,主持.
2007.9-2008.7 基于服务架构的民航公众信息服务平台,国家863重点课题,参与.
代表性科研成果发表多篇机器学习领域SCI一区期刊论文(如IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Neural Networks and Learning Systems),机器学习顶级会议(NIPS, ICML),数据挖掘顶级会议(KDD)人工智能顶级会议(AAAI,IJCAI)论文

[58]Huimin Wu, Bin Gu, Zhengmian Hu, Heng Huang.Fast and Scalable Adversarial Training of Kernel SVM via Doubly Stochastic Gradients. AAAI 2021. (accepted)(CCF A类)
[57]Wanli Shi, Bin Gu, Heng Huang.Improved Penalty Method via Doubly Stochastic Gradients for Bilevel Hyperparameter Optimization.AAAI 2021. (accepted)(CCF A类)
[56]Bin Gu, Wenhan Xian, Zhouyuan Huo, Cheng Deng and Heng Huang. A Unified q-Memorization Framework for Asynchronous Stochastic Optimization.JMLR. (accepted)(CCF A类)
[55]Bin Gu, Zhou Zhai, Cheng Deng, and Heng Huang. Efficient Active Learning by Querying Discriminative and Representative Samples and Fully Exploiting Unlabeled Data.IEEE Transactions on Neural Networks and Learning Systems.(accepted)(SCI一区)
[54]Bin Gu, Xiang Geng, Xiang Li, Wanli Shi, Guansheng Zheng, Cheng Deng, and Heng Huang. Scalable Kernel Ordinal Regression via Doubly Stochastic Gradients.IEEE Transactions on Neural Networks and Learning Systems.(accepted)(SCI一区)
[53]Bin Gu, Xiang Geng, Wanli Shia, Yingying Shana, Yufang Huang, Zhijie Wang, Guansheng Zheng. Solving Large-Scale Support Vector Ordinal Regressionwith Asynchronous Parallel Coordinate DescentAlgorithms.Pattern Recognition. (accepted)
[52]Runxue Bao,Bin Gu, Heng Huang. Fast OSCAR and OWL with Safe Screening Rules.ICML 2020.(CCF A类)
[51]Bin Gu, Zhiyuan Dang, Xiang Li and Heng Huang. Federated Doubly Stochastic Kernel Learning for Vertically Partitioned Data.KDD 2020.(CCF A类)
[50]Wanli Shi,Victor S. Sheng,Xiang Li, Bin Gu. Semi-Supervised Multi-Label Learning from Crowds via Deep Sequential Generative Model.KDD 2020.(CCF A类)
[49]Wanli Shi,Xiang Li,Bin Gu. Quadruply Stochastic Gradient Method for Large Scale Nonlinear Semi-Supervised Ordinal Regression AUC Optimization.AAAI 2020.(CCF A类)
[48]Zhou Zhai,Xiang Li,Bin Gu. Safe Sample Screening for Robust Support Vector Machine.AAAI 2020.(CCF A类)
[47]Runxue Bao,Bin Gu, Heng Huang. Efficient Approximate Solution Path Algorithm for Order Weight L_1-Norm with Accuracy Guarantee.ICDM 2019.
[46]Bin Gu, Xiang Geng, Xiang Li, Guansheng Zheng. Efficient Inexact Proximal Gradient Algorithms for Structured Sparsity-Inducing Norm.Neural Networks. (accepted)(SCI一区)
[45]Bin Gu, Wenhan Xian, Heng Huang.Asynchronous Stochastic Frank-Wolfe Algorithms for Non-convex Optimization.IJCAI 2019.(CCF A类)
[44]Xiang Geng,Bin Gu, Xiang Li, Wanli Shi, Guansheng Zheng, Heng Huang. Scalable Semi-Supervised SVM via Triply Stochastic Gradients.IJCAI 2019.(CCF A类)
[43]Wanli Shi,Bin Gu, Xiang Li, Xiang Geng, Heng Huang. Quadruply Stochastic Gradients for Large-Scale Nonlinear Semi-Supervised AUC Optimization. IJCAI 2019.(CCF A类)
[42]Shuyang Yu,Bin Gu, Kunpeng Ning, Haiyan Chen, Jian Pei and Heng Huang. Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning. KDD 2019.(CCF A类)
[41]Bin Gu, Yingying Shan,Xin Quan, Guansheng Zheng. Accelerating Sequential Minimal Optimization via Stochastic Sub-Gradient Descent. IEEE Transactions on Cybernetics. (accepted)(SCI一区)
[40]Feihu Huang,Bin Gu, Zhouyuan Huo, Songcan Chen, Heng Huang. Faster Gradient-Free Proximal Stochastic Methods forNonconvex Nonsmooth Optimization. AAAI 2019.(CCF A类)
[39]Bin Gu, Zhouyuan Huo, Heng Huang. Scalable and Efficient Pairwise Learning to Achieve Statistical Accuracy. AAAI 2019.(CCF A类)
[38]Zhouyuan Huo,Bin Gu, Heng Huang Training Neural Networks Using Features Replay. NIPS 2018.(CCF A类)
[37]Bin Gu, Xin Quan, Yunhua Gu, Victor S. Sheng, Guansheng Zheng.Chunk Incremental Learning for Cost-Sensitive Hinge Loss Support Vector Machine. Pattern Recognition.(accepted)(SCI二区)
[36]Bin Gu, Zhouyuan Huo, Heng Huang. Faster Derivative-Free Stochastic Algorithm for Shared Memory Machines. ICML 2018.(CCF A类)
[35]ZhouyuanHuo,BinGu,QianYang, Heng Huang. Decoupled Parallel Backpropagation with Convergence Guarantee. ICML 2018.(CCF A类)
[34]Bin Gu, Xiao-Tong Yuan, Songcan Chen, Heng Huang. New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine.KDD 2018. (CCF A类)
[33]Bin Gu, Xingwang Ju, Xiang Li, Guansheng Zheng, Heng Huang. Faster Training Algorithms for Structured Sparsity-Inducing Norm. IJCAI 2018 . (accepted)(CCF A类)
[32]Bin Gu,Yingying Shan, Xiang Geng, Guansheng Zheng, Heng Huang. Accelerated Asynchronous Greedy Coordinate Descent Algorithm for SVMs. IJCAI 2018 . (accepted)(CCF A类)
[31]Bin Gu, Zhouyuan Huo, Heng Huang. Asynchronous Doubly Stochastic Group Regularized Learning. AISTATS 2018. (accepted)
[30]Bin Gu, Victor S. Sheng. A Solution Path Algorithm for General Parametric Quadratic Programming Problem.IEEE Transactions on Neural Networks and Learning Systems.(accepted) (SCI一区)
[29]Bin Gu. A Regularization Path Algorithm for Support Vector Ordinal Regression.Neural Networks, accepted. (SCI一区)
[28]Xiang Li, Huaimin Wang, Bin Gu, Charles X Ling. The convergence of linear classifiers on large sparse data. Neurocomputing, 2017 (SCI二区)
[27]Bin Gu, De Wang, Zhouyuan Huo, Heng Huang. Inexact Proximal Gradient Methods for Non-convex and Non-smooth Optimization.AAAI 2018, accepted. (CCF A类)
[26]Zhouyuan Huo,Bin Gu, Heng Huang. Accelerated Method for Stochastic Composition Optimization with Nonsmooth Regularization,AAAI 2018, accepted (CCF A类)
[25]Bin Gu, Xin Miao, Zhouyuan Huo, Heng Huang.Asynchronous Doubly Stochastic Sparse Kernel Learning,AAAI 2018, accepted (CCF A类)
[24]Bin Gu, Guodong Liu, Heng Huang. Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping.KDD 2017. (Oral Presentation, CCF A类)
[23]Xiang Li,Bin Gu, Shuang Ao, Huaiming Wang, Charles X. Ling. Triply Stochastic Gradients on Multiple Kernel Learning,UAI 2017(CCF B类).
[22]Victor Sheng, Jing Zhang,Bin Gu, Xindong Wu. Majority Voting and Pairing with Multiple Noisy Labeling.IEEE Transactions on Knowledge and Data Engineering. 2017. (CCF A类)
[21]Bin Gu, Victor S. Sheng, Keng Yeow Tay, Walter Romano, and Shuo Li. Cross Validation Through Two-dimensional Solution Surface for Cost-Sensitive SVM.IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. (CCF A类, SCI一区)
[20]Bin Gu, Xinming Su, Victor S. Sheng Structural Minimax Probability Machine.IEEE Transactions on Neural Networks and Learning Systems. 2017 (SCI一区)
[19]Bin Gu, Victor S. Sheng. A Robust Regularization Path Algorithm for ν-Support Vector Classification.IEEE Transactions on Neural Networks and Learning Systems. 2017 (SCI一区)
[18]Bin Gu,Yingying Shan, Victor S. Sheng, and Shuo Li. Sparse Regression with Output Correlation for Cardiac Ejection Fraction Estimation.Information Sciences.2017. (SCI二区)
[17]Bin Gu, and Charles Ling. "A New Generalized Error Path Algorithm for Model Selection."Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015. (CCF A类)
[16]Bin Gu, Victor S. Sheng, and Shuo Li. Bi-parameter space partition for cost-sensitive SVM. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 3532–3539, 2015. (CCF A类)
[15]Xiang Li,Huaiming Wang,Bin Gu, Charles X. Ling. Data Sparseness in Linear SVM.IJCAI 2015:3628-3634. (CCF A类)
[14]Bin Gu, Victor S. Sheng, Keng Yeow Tay, Walter Romano, and Shuo Li. Incremental Learning for ν-Support Vector Regression.Neural Networks. 67 (2015): 140-150. (SCI一区)
[13]Bin Gu, Victor S. Sheng, Keng Yeow Tay, Walter Romano, and Shuo Li. Incremental Support Vector Learning for OrdinalRegression.IEEE Transactions on Neural Networks and Learning Systems,26(7), pp. 1403 - 1416, 2015. (SCI一区)
[12]Wang, Z.; Salah, M.B.;Gu, B.; Islam, A.; Goela, A.; Li, S., "Direct Estimation of Cardiac Biventricular Volumes With an Adapted Bayesian Formulation,"Biomedical Engineering, IEEE Transactions on, vol.61, no.4, pp.1251-1260, 2014. (SCI二区)
[11]Victor S. Sheng,Bin Gu, Wei Fang, Jian Wu, Cost-sensitive learning for defect escalation,Knowledge-Based Systems, Volume 66, August 2014, Pages 146-155, (SCI二区)
[10]Bin Gu, Victor S. Sheng. Feasibility and Finite Convergence Analysis for Accurate On-line ν-Support Vector Learning.IEEE Transactions on Neural Networks and Learning Systems, 24(8):1304-1315, 2013. (SCI一区)
[9]Bin Gu, Jian-Dong Wang, Guan-Sheng Zheng, Yue-Cheng Yu. Regularization Path for ν-Support Vector Classification.IEEE Transactions on Neural Networks and Learning Systems, 23(5): 800-811,2012. (SCI一区)
[8]Bin Gu, Jian-Dong Wang, Yue-Cheng Yu, Guan-Sheng Zheng, Yu-Fan Huang, and Tao Xu. Accurate on-line ν-support vector learning.Neural Networks, 27(0):51–59, 2012. (SCI一区)
[7]顾彬,王建东.有效的ν支持向量回归机的ν解路径算法.软件学报,23(10): 2643?2654,2012.
[6]顾彬,郑关胜,王建东. 增量和减量式标准支持向量机的分析.软件学报,24(7):1601-1613, 2013.
[5]Bin Gu, Jian-Dong Wang, and Tao Li. Ordinal-Class Core Vector Machine,Journal of Computer Science and Technology. 2010, 25(4): 699-708.
[4]Bin Gu, Jian-Dong Wang, and Hai-yan Chen. On-line Off-line Ranking Support Vector Machine and Analysis.In Proceedings of International Joint Conference on Neural Networks (IJCNN’08), New York: IEEE Press, 2008.
[3]顾彬,王建东. 一种新颖的QAR数据特征提取方法.四川大学学报(工程科学版),2011,3(43):113-117.
[2]顾彬,王建东.一类孤立因子阈值的计算方法.小型微型计算机系统,2008,29 (12):2254-2257.
[1]徐涛,丁建立,顾彬,王建东. 基于增量式排列支持向量机的机场航班延误预警,航空学报,2009,30(7): 1256-1263.
更多信息请见https://sslecb471a6e0c70732bd329da5f5.vpn.nuist.edu.cn/site/jsgubin/
荣誉:其他学术成就:帮助08奥运数据安全提供商 “杭州安恒信息技术有限公司” 研发 运维人员偷导数据行为风险预警系统


教育经历 暂无内容

工作经历 暂无内容

社会兼职 暂无内容

研究方向 暂无内容

其他联系方式 暂无内容

团队成员 暂无内容

相关话题/南京信息工程大学 计算机