删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
南京信息工程大学自动化学院导师教师师资介绍简介-刘光灿
本站小编 Free考研考试/2021-03-28
其他栏目
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
科学研究
当前位置 : 中文主页 >> 科学研究
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
研究领域
当前位置 : 中文主页 >> 科学研究 >> 研究领域
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
论文成果
当前位置 : 中文主页 >> 科学研究 >> 论文成果
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
专利
当前位置 : 中文主页 >> 科学研究 >> 专利
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
著作成果
当前位置 : 中文主页 >> 科学研究 >> 著作成果
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
科研项目
当前位置 : 中文主页 >> 科学研究 >> 科研项目
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
教学研究
当前位置 : 中文主页 >> 教学研究
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
教学资源
当前位置 : 中文主页 >> 教学研究 >> 教学资源
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
授课信息
当前位置 : 中文主页 >> 教学研究 >> 授课信息
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
教学成果
当前位置 : 中文主页 >> 教学研究 >> 教学成果
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
其他栏目
基本信息
教师姓名:刘光灿
职称:教授
所在单位:自动化学院
学术荣誉:
国家杰出/优秀青年基金获得者
个人简介
学习与工作经历:教育经历:
2000.9 至 2004.7上海交通大学数学与应用数学本科
2004.9 至2010.7上海交通大学计算机科学与技术博士
工作经历:
2010.9至 2011.12National University of SingaporeResearch Fellow
2012.2 至 2013.2 University of Illinois at Urbana-Champaign Research Associate
2013.5 至 2014.7 Cornell University Research Associate
2014.8 至 今南京信息工程大学 教授
社会兼职:担任国际SCI期刊Neurocomputing的编委、10多个国际主流会议的程序委员会委员、及20余种国际主流期刊的论文评审专家。研究领域:模式识别、计算机视觉、图像处理、数据挖掘、多媒体
科研成果:主要项目:
[1] NSFC **, 国家自然科学基金青年项目, 2016 - 2018, 24.4万
[2] NSFC **, 国家自然科学基金优秀青年基金项目, 2017 - 2019, 150万
[3] BK**, 江苏省自然科学基金****基金项目, 2017 - 2019, 100万
主要论文:
[1] Guangcan Liu, Qingshan Liu, and Ping Li. Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),2016.
[2] Guangcan Liu and Ping Li. Low-Rank Matrix Completion in the Presence of High Coherence. IEEE Transactions on Signal Processing (T-SP), 2016.
[3] Guangcan Liu, Xuan Xu, Jinhui Tang, Qingshan Liu, Shuicheng Yan. A Deterministic Analysis for LRR. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 38, no.3, pp. 417-430, 2016.
[4] Guangcan Liu, Shiyu Chang, and Yi Ma. Blind Image Deblurring Using Spectral Properties of Convolution Operators. IEEE Transactions on Image Processing (T-IP), vol. 23, no.12, pp. 5047-5056, 2014.
[5] Guangcan Liu and Ping Li, Recovery of Coherent Data via Low-Rank Dictionary Pursuit, Advances in Neural Information Processing Systems (NIPS), pp. 1206-1214, Montreal, Canada,2014.
[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,Ju Sun, Yong Yu, and Yi Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol. 35, no. 1, pp.171-184, 2013.
[7] Guangcan Liu and Shuicheng Yan. Active Subspace: Towards Scalable Low-Rank Learning. Neural Computation, vol. 24, no. 12, pp. 3371-3394, 2012.
[8] Guangcan Liu, Huan Xu, and Shuicheng Yan. Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation. International conference on Artificial Intelligence and Statistics (AISTATS), vol. 22, pp. 703-711, Canary Islands, Spain, 2012.
[9] Guangcan Liu and Shuicheng Yan. Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction. International Conference on Computer Vision (ICCV), pp. 1615-1622, Barcelona, Spain, 2011.
[10] Guangcan Liu, Zhouchen Lin, Yong Yu, and Xiaoou Tang , Unsupervised Object Segmentation with a Hybrid Graph Model (HGM), IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), vol.32, no.5, pp.910-924, 2010.
[11] Guangcan Liu, Zhouchen Lin, and Yong Yu, Robust Subspace Segmentation by Low-Rank Representation. International Conference on Machine Learning (ICML), pp. 663-670, Haifa, Isreal, June 2010.
[12] Guangcan Liu, Zhouchen Lin, Yong Yu, Xiaoou Tang. Radon Representation Based Feature Descriptor for Texture Classification; IEEE Transactions on Image Processing (T-IP), vol. 18, no. 5, pp. 921-928, 2009.
[13] Guangcan Liu, Zhouchen Lin, Yong Yu. Multi-Output Regression on the Output Manifold. Pattern Recognition (PR), vol.42, no.11, pp. 2737-2743, 2009.
[14] Guangcan Liu, Zhouchen Lin, Xiaoou Tang, Yong Yu. A Hybrid Graph Model for Unsupervised Object Segmentation, International Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.
[15] Guangcan Liu, Yong Yu, Xing Zhu. A Learning-Based Term-weighting Approach for Information Retrieval; American Association for Artificial Intelligence (AAAI), vol. 20, no. 3, pp. 1418-1423, Pittsburgh, USA, 2005.
荣誉:1、中华人民共和国教育部自然科学奖、二等奖 (排序2),2016
2、上海市研究生优秀论文成果奖(排序1), 20153、微软****,2006
获奖信息
当前位置 : 中文主页 >> 获奖信息
共0条0/0
手机版
欢迎您访问我们的网站,您是第 位访客
相关话题/南京信息工程大学 自动化
南京信息工程大学计算机与软件学院导师教师师资介绍简介-刘青山
其他栏目个人简介学习与工作经历:教育背景2000.4-2003.3中科院自动化所模式识别国家重点实验室博士生1997.9-2000.3东南大学自动化系硕士生1993.9-1997.7中国纺织大学(现东华大学)自动化系本科生工作经历2011.8-至今南京信息工程大学信息与控制学院教授2014.1-至今 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学计算机与软件学院导师教师师资介绍简介-刘琦
更多刘琦教授博士生导师硕士生导师办公地点:计算机楼411查看更多>同专业博导同专业硕导研究方向/社会兼职MORE+[1]边缘计算[2]FES过程评估[3]气象灾害监测预警[4]用电侧负荷分析[1]IEEESeniorMember[2]HEAFellow[3]CCFMember论文成果暂无内容科研项目 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学计算机与软件学院导师教师师资介绍简介-刘彦力
其他栏目刘彦力讲师(高校)性别:女所在单位:计算机与软件学院查看更多教育经历工作经历社会兼职暂无内容暂无内容暂无内容研究方向联系方式暂无内容暂无内容 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学计算机与软件学院导师教师师资介绍简介-刘文杰
+刘文杰个人信息职称:副教授性别:男所在单位:计算机与软件学院学科:计算机科学与技术办公地点:计算机楼201其他联系方式暂无内容个人简介学习与工作经历:教育经历:2006-2011东南大学,计算机软件与理论博士2001-2004武汉大学,计算机软件与理论硕士1997-2001华中农业大学,计算机科学 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学环境科学与工程学院导师教师师资介绍简介-刘凤玲
其他栏目个人简介姓名:刘凤玲性别:女职称:副教授最高学历:博士所属专业:环境工程所属系部:环境工程系毕业院校:南京大学研究方向:环境纳米材料、水污染控制邮箱:liufl@nuist.edu.cn;liufengling123@163.com主讲课程:环境工程原理、城镇防洪与雨洪利用、环境材料学工作经 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学计算机与软件学院导师教师师资介绍简介-马利
+同专业硕导个人信息MORE+马利教授硕士生导师性别:女所在单位:计算机与软件学院个人简介暂无内容工作经历暂无内容研究方向暂无内容团队成员暂无内容+个人信息MORE+马利教授硕士生导师性别:女所在单位:计算机与软件学院同专业硕导科学研究当前位置:中文主页>>科学研究研究领域暂无内容论文成果暂无内容专 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学环境科学与工程学院导师教师师资介绍简介-刘怡冰
欢迎您的访问您是第位访客开通时间:..最后更新时间:..南京信息工程大学|English|手机版刘怡冰赞的个人主页http://faculty.nuist.edu.cn/liuyibing/zh_CN/index.htm助教(学生教育管理系列)教师拼音名称:liuyibing所在单位:环境科学与工程 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学环境科学与工程学院导师教师师资介绍简介-刘刚
+同专业博导同专业硕导刘刚个人信息博士生导师硕士生导师性别:男毕业院校:中国科学院兰州地质研究所学历:博士研究生毕业学位:理学博士学位所在单位:环境科学与工程学院学科:地球化学办公地点:1号学科楼(环科院)C303。联系方式:手机:**;电子邮箱:liugang650104@sina.com。其他联 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学环境科学与工程学院导师教师师资介绍简介-李振炫
+个人信息MORE+李振炫副教授性别:男所在单位:环境科学与工程学院个人简介姓名:李振炫出生年月:1981年12月8日性别:男导师:陆桂华教授和DrAnnetteHofmann职称:副教授最高学历:博士所属专业:环境工程工作单位:环境科学与工程学院所属系部:环境工程系毕业院校:法国里尔第一大学研究方 ...南京信息工程大学 本站小编 Free考研考试 2021-03-28南京信息工程大学环境科学与工程学院导师教师师资介绍简介-刘振鑫
其他栏目English个人简介姓名:刘振鑫出生年月:1986年1月2日性别:男职称:讲师最高学历:博士所属专业:大气环境,大气科学,大气数值模式发展毕业院校:北京大学研究方向:大气科学,大气数值模式办公地点:学科一号楼C112邮箱:liuzhenxin@nuist.edu.cn主讲课程:环境气象学( ...南京信息工程大学 本站小编 Free考研考试 2021-03-28