删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南京航空航天大学能源与动力学院导师教师师资介绍简介-郑前钢

本站小编 Free考研考试/2021-02-18



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



教育经历
[1].2013.9-2018.6
南京航空航天大学 |  航空宇航推进理论与工程 |  博士研究生毕业 |  工学博士学位

研究方向
[1].1.人工智能算法及航空发动机机载模型建模
1.1航空发动机机载自适应模型建模;
1.2机器学习及应用;
1.3深度学习及应用.

[2].2.飞机/发动机综合优化控制
2.1稳态优化控制;
2.2过渡态优化控制;
2.3相关优化算法.

[3].3.智能航空发动机控制:
3.1航空发动机寿命延长;
3.2航空发动机应急控制;
3.3模型预测控制及其相关优化算法;
3.4基线模式及多模式优化控制技术;
3.5主动控制

个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导

扫一扫用手机查看


手机版


最后更新时间:.. 访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



科学研究
研究领域
航空发动机控制
论文成果
More>> 王永亮.Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression
王永亮.A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression
张海波.The Installation Performance Control of Three Ducts Separate Exhaust Variable Cycle Engine
张海波.Modeling of the turbofan with an ejector nozzle based on infrared prediction
胡忠志.Modeling and Simulation of Aero-Derivative Gas Turbine for Power Generation
王永亮.Adaptive Control and Predictive Control for Torsional Vibration Suppression in Helicopter/Engine System
郑前钢.Research on Performance Seeking Control based on Beetle Antennae Search Algorithm.Measurement and Control.2020
郑前钢.Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model.Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering.2020
郑前钢.Research on hybrid optimization and deep learning modeling method in the performance seeking control.Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.2020
郑前钢.Research on hybrid optimization and deep learning modeling method in the performance seeking control.Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.2020
专利
More>> 一种基于深强化学习的航空发动机控制方法、装置
基于复合模型预测控制的航空发动机直接推力控制方法
一种基于非线性模型预测的航空发动机控制方法
一种航空发动机直接推力逆控制方法及装置
一种基于神经网络的航空发动机动态模型建模方法
基于深度神经网络的航空发动机稳态模型建模方法
基于燃油逆映射的航空发动机极限保护方法及装置
基于深度Q学习的航空发动机控制装置
基于非线性模型预测控制的航空发动机直接推力控制方法
基于延寿控制的航空发动机加速控制实时优化方法、装置


个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看




手机版
最后更新时间:..
访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



研究领域
航空发动机控制


个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看




手机版
最后更新时间:..
访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



论文成果
[1]王永亮,王永亮,王永亮等.Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression
[2]王永亮,王永亮,王永亮等.A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression
[3]张海波,张海波,张海波等.The Installation Performance Control of Three Ducts Separate Exhaust Variable Cycle Engine
[4]张海波,张海波,张海波等.Modeling of the turbofan with an ejector nozzle based on infrared prediction
[5]胡忠志,胡忠志,胡忠志等.Modeling and Simulation of Aero-Derivative Gas Turbine for Power Generation
[6]王永亮,王永亮,王永亮等.Adaptive Control and Predictive Control for Torsional Vibration Suppression in Helicopter/Engine System
[7]郑前钢.Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J].Measurement and Control,2020
[8]郑前钢.Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
[9]郑前钢.Research on hybrid optimization and deep learning modeling method in the performance seeking control[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2020
[10]陈浩颖,郑前钢.Research on hybrid optimization and deep learning modeling method in the performance seeking control[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2020
[11]汪勇,郑前钢.Research on aero-engine steady model based on an improved compact propulsion system model[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2019
[12]郑前钢.Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine.Infrared Physics & Technology,2019,102(10299)
[13]Thrust Inverse Control of Aero-engine based on Deep Neural Network[J].International Journal of Turbo & Jet-Engines,2019
[14]Wang Y,郑前钢.Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
[15]Fu D,郑前钢.A study on global optimization and deep neural network modeling method in performance-seeking control[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering

共25条1/2 首页上页下页尾页



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



专利
[1]郑前钢.一种基于深强化学习的航空发动机控制方法、装置:
[2]郑前钢.基于复合模型预测控制的航空发动机直接推力控制方法:
[3]郑前钢.一种基于非线性模型预测的航空发动机控制方法:
[4]郑前钢.一种航空发动机直接推力逆控制方法及装置:
[5]郑前钢.一种基于神经网络的航空发动机动态模型建模方法:
[6]郑前钢.基于深度神经网络的航空发动机稳态模型建模方法:
[7]郑前钢.基于燃油逆映射的航空发动机极限保护方法及装置:
[8]郑前钢.基于深度Q学习的航空发动机控制装置:ZL.X[p].
[9]郑前钢.基于非线性模型预测控制的航空发动机直接推力控制方法:ZL5.1[p].
[10]郑前钢.基于延寿控制的航空发动机加速控制实时优化方法、装置:
[11]郑前钢.用于自旋恢复的直升机非线性预测控制方法及装置:
[12]郑前钢.基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法:
[13]郑前钢.基于单纯形样条函数的航空发动机稳态模型的建模方法:


共13条1/1 首页上页下页尾页



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



著作成果

共0条0/0



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



科研项目

共0条0/0



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



教学研究
授课信息
技术应用类


个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看




手机版
最后更新时间:..
访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



教学资源

共0条0/0



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



授课信息
[1]技术应用类


共1条1/1 首页上页下页尾页



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男



教学成果

共0条0/0



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:



更多


` 中文 English






郑前钢 硕士生导师
招生学科专业:
能源与动力学院 -- 能源动力 --【招收硕士研究生】

学位:工学博士学位
职称:讲师
所在单位:能源与动力学院

硕士生导师
教师拼音名称:zhengqiangang
电子邮箱:zhqg@nuaa.edu.cn
所在单位:能源与动力学院
学历:博士研究生毕业
性别:男

获奖信息

共0条0/0



个人简介:
以下信息由研究生系统导入,请酌情修改完善2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
研究方向:动力工程1)人工智能算法及航空发动机机载模型建模: a)机器学习;b)深度学习;c)航空发动机机载自适应模型建模;
2)飞机/发动机综合优化控制: a)飞机/发动机综合稳态优化控制;b)飞机/发动机综合过渡态优化控制;c)综合优化控制相关优化算法研究.
3)智能航空发动机控制:a)航空发动机寿命延长;b)航空发动机应急控制c)模型预测控制及其相关优化算法;e)基线模式及多模式优化控制技术.;f)主动控制
发表学术论文,出版专著情况:1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.**
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.**
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/3395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 8527. https://doi.org/10.1177/8527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 3151. https://doi.org/10.1177/3151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/2477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/4939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: **47010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.
科研成果获奖及专利:1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL4.7 授权日期:**
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 7.2 授权日期:**
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL6.9授权日期:**
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL1.5, 授权日期:**
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL5.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 3.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 3.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 1.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 1.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 2.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:84.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 88.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CNA(公开).


其他联系方式
邮箱 : 33d5b690c0eaf121514e17dbbef84299d99df4c802e282de67571ac6d41be92984cf0fe4b001be1851e111e6122eba81ae78cbc58a2cfda1ef93b4f8122e683da59f**c69803ee177109d8baa8e**c288ba83381a6eb18001f864cfb12d3d68ae174a524d3c1251c23e4f

同专业硕导


扫一扫用手机查看



手机版


最后更新时间:..访问量:
相关话题/南京航空航天大学 能源