删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

南京理工大学环境与生物工程学院导师教师师资介绍简介-荣少鹏

本站小编 Free考研考试/2021-02-17

姓 名 荣少鹏 性 别 男
出生年月 1990年8月 籍贯
民 族 汉族 政治面貌 党员
最后学历 博士研究生 最后学位 工学博士
技术职称 副教授 导师类别 硕士生导师
导师类型 校内 兼职导师 否
行政职务 Email rongrsp@vip.qq.com
工作单位 南京理工大学环境与生物工程学院 邮政编码 210094
通讯地址 孝陵卫200号
单位电话
个人主页 http://ebe.njust.edu.cn/b8/e2/c5081a178402/page.htm


指导学科
学科专业(主) 0830|环境科学与工程 招生类别 硕士 所在学院 环境与生物工程学院
研究方向 纳米功能材料的设计制备及其在环境领域的应用
环境催化
大气污染化学及净化技术



工作经历
2018.8-至今南京理工大学环境与生物工程学院,副教授

教育经历
2007.9-2011.7中国矿业大学环境与测绘学院,获学士学位
2011.9-2014.7南京大学环境学院,获硕士学位
2014.9-2018.7清华大学环境学院,获博士学位

获奖、荣誉称号
2019年,江苏省高层次创新创业人才-双创博士
2018年,北京市优秀博士毕业生
2017年,北京市大学生化学实验竞赛二等奖(指导教师)

科研项目
[1]国家自然科学青年基金项目,,主持;
[2]环境模拟与污染控制国家重点联合实验室开放课题,19K08ESPCT,主持;
[3]南京理工大学自主科研自由探索专项,,主持;
[4]校企横向项目,,主持;
[5]国家自然科学基金面上项目,**,参加;
[6]国家“十二五”863计划课题,2012AA062701,参加

发表论文
[1]Rong S, He T, Zhang P*, Self-assembly of MnO2 nanostructures into high purity three-dimensional framework for high efficiency formaldehyde mineralization. Applied Catalysis B: Environmental. 2020, 267: 118375.(IF=16.683)
[2] Rong S, Zhang P*, Liu F, Yang Y. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catalysis. 2018, 8: 3435-3446. (ESI Highly Cited Paper, IF=12.35)
[3] Rong S, Zhang P*, Yang Y, Zhu L, Wang J, Liu F. MnO2 framework for instantaneous mineralization of carcinogenic airborne formaldehyde at room temperature. ACS Catalysis, 2017, 7: 1057-1067. (IF=12.35)
[4] He T, Zeng X, Rong S*. The controllable synthesis of substitutional and interstitial nitrogen-doped manganese dioxide: the effects of doping sites on enhancing the catalytic activity. Journal of Materials Chemistry A. 2020, 8: 8383-8396. (IF=11.301)
[5] He T, Shao D, Zeng X, Rong S*. Harvesting the vibration energy of α-mno2 nanostructures for complete catalytic oxidation of carcinogenic airborne formaldehyde at ambient temperature. Chemosphere. 2020, 261: 127778.
[6] Rong S*, Zhang P*, Liu F. Scalable synthesis of water-dispersible 2D manganese dioxide monosheets. Journal of Physics: Condensed Matter. 2020, 32: 015301
[7] Rong S, Li K, Zhang P*, Liu F, Zhang J. Potassium associated manganese vacancy in birnessite-type manganese dioxide for airborne formaldehyde oxidation. Catalysis Science & Technology. 2018, 8: 1799-1812. (Front Cover Paper)
[8] Liu F, Rong S, Zhang P*, Gao L. One-step synthesis of Nanocarbon-Decorated MnO2 with Superior Activity for indoor Formaldehyde Removal at Room Temperature. Applied Catalysis B: Environmental, 2018, 215: 158-167.
[9] Liu F, Cao R, Rong S, Zhang P*. Tungsten Doped Manganese Dioxide for Efficient Removal of Gaseous Formaldehyde at Ambient Temperatures. Material & Design, 2018, 149: 165-172.
[10] Zhu L, Wang J, Rong S, Wang H, Zhang P*. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature, Applied Catalysis B: Environmental, 2017, 211: 212-221.
[11] Rong S, Zhang P*, Wang J, Liu F, Yang Y, Yang G, Liu S. Ultrathin manganese dioxide nanosheets for formaldehyde removal and regeneration performance, Chemical Engineering Journal, 2016, 306: 1172-1179. (IF=10.652)
[12] Rong S, Zhang P*, Yang Y, Liu F. Room temperature synthesis of manganese oxide quantum dots and their application as a fluorescent probe for the detection of metal ions in aqueous solution, RSC Advances, 2016, 6: 114632-114638.
[13] Rong S, Sun Y*. Degradation of TAIC by water falling film dielectric barrier discharge-Influence of radical scavengers, Journal of Hazardous Materials, 2015, 287: 317-324.
[14] Rong S, Sun Y*. Wetted-wall corona discharge induced degradation of sulfadiazine antibiotics in aqueous solution, Journal of Chemical Technology and Biotechnology, 2014, 89: 1351-1359.
[15] Rong S, Sun Y*, Zhao Z. Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge, Chinese Chemical Letters, 2014,25: 187-192.
[16] Rong S, Sun Y*, Zhao Z, Wang H. Dielectric barrier discharge induced degradation of diclofenac in aqueous solution. Water Science & Technology. 2014, 69 (1): 76-83.

科研创新
[1]一种基于电容耦合分区放电等离子体处理恶臭气体的装置,专利号:ZL 8.1
[2]一种高浓度TAIC生产废水处理装置及处理方法,专利号:ZL 1.6
[3]一种低温酸性废水的同步综合加热装置,专利号:ZL 7.8
[4]一种新型造纸黑液处理方法及系统,专利号:ZL9.1
[5]一种TiO2/ACF催化材料的制备方法与应用,专利号:ZL2.5
[6]一种活性炭与低温等离子体一体化的多功能净水装置,专利号:ZL 1.8
[7]一种转盘式活性炭床与低温等离子体一体化废水处理装置,专利号:ZL 0.X



相关话题/环境 南京理工大学