外周神经组织将生物电信号从大脑传递到身体其他部位。外周神经的损伤通常会导致慢性疼痛、神经紊乱、瘫痪或残疾。现在,研究人员已经开发出一种可拉伸的导电水凝胶,将来有一天可以用来修复这些类型神经的损伤。他们在ACS Nano上报道了这项研究结果。
外周神经被完全切断的损伤,例如事故造成的深切口,是很难治疗的。一种常见的治疗策略被称为自体神经移植。它是从身体其他部位移走一段外周神经,然后缝在被切断神经的两端。然而,该手术并不一定能恢复神经功能,有时还需要多次后续手术。人工神经移植物与支持细胞相结合的治疗策略也被使用,但通常需要很长的时间神经才能完全恢复。沈群东、王倡春、朱泽章和他们的同事们想要开发一种有效、迅速起作用的治疗方法来替代自体神经移植。为此,他们决定探索导电水凝胶——一种可以传输生物电信号的遇水膨胀的生物相容性高分子。
研究人员制备了一种坚韧但可拉伸的导电水凝胶,其中含有聚苯胺和聚丙烯酰胺。这种交联聚合物具有3D微孔网络,植入后神经细胞可以进入并附着,从而帮助恢复失去的神经组织。研究小组显示这种材料可以通过从蟾蜍身上取下的受损坐骨神经来传导生物电信号。然后,他们将水凝胶植入坐骨神经损伤的大鼠体内。两周后,老鼠们的神经恢复了生物电特性。与未治疗的老鼠相比,它们的行走能力有所改善。研究人员说这种材料的导电性能够在近红外光的照射下得到提高;近红外光可以穿透生物组织,因此用这种方式可进一步增强神经信号传导和恢复。
研究人员获得了中国国家重点研发计划、国家自然科学基金、高校****与创新研究团队计划、南京大学优秀博士研究生B计划的资助。
图片出处:改编自ACS Nano 2020, DOI: 10.1021/acsnano.0c05197
美国化学学会(ACS)是由美国国会特许的非营利性组织。ACS的使命是促进更广泛的化学企业和它的从业者为地球和人类的利益。该学会是全球领先的化学相关信息和研究机构,通过其多种研究解决方案、同行评议期刊、科学会议、电子书和每周新闻期刊《化学与工程新闻》提供相关信息和研究。ACS期刊是科学文献中被引用最多、最受信任和阅读最多的期刊之一。ACS本身并不进行化学研究。作为科学信息解决方案的专家(包括SciFinder®和STN®),其CAS部门负责全球的研究、发现和创新。ACS的主要办事处在华盛顿特区和俄亥俄州的哥伦布市。
美国化学学会新闻发布原文链接:
https://www.acs.org/content/acs/en/pressroom/newsreleases/2020/october/a-hydrogel-that-could-help-repair-damaged-nerves.html
论文标题:Conductive Hydrogel for Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve
论文链接:ACS Nano 2020, DOI: 10.1021/acsnano.0c05197
附件:美国化学学会新闻发布原文
American Chemical Society>Discover Chemistry>News Releases 2020
FOR IMMEDIATE RELEASE | October 07, 2020
A hydrogel that could help repair damaged nerves
"Conductive Hydrogel for Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve"
ACS Nano
A conductive polymer hydrogel could help repair damaged peripheral nerves.
Credit: Adapted from ACS Nano 2020, DOI: 10.1021/acsnano.0c05197
Injuries to peripheral nerves –– tissues that transmit bioelectrical signals from the brain to the rest of the body ­­–– often result in chronic pain, neurologic disorders, paralysis or disability. Now, researchers have developed a stretchable conductive hydrogel that could someday be used to repair these types of nerves when there’s damage. They report their results in ACS Nano.
Injuries in which a peripheral nerve has been completely severed, such as a deep cut from an accident, are difficult to treat. A common strategy, called autologous nerve transplantation, involves removing a section of peripheral nerve from elsewhere in the body and sewing it onto the ends of the severed one. However, the surgery does not always restore function, and multiple follow-up surgeries are sometimes needed. Artificial nerve grafts, in combination with supporting cells, have also been used, but it often takes a long time for nerves to fully recover. Qun-Dong Shen, Chang-Chun Wang, Ze-Zhang Zhu and colleagues wanted to develop an effective, fast-acting treatment that could replace autologous nerve transplantation. For this purpose, they decided to explore conducting hydrogels –– water-swollen, biocompatible polymers that can transmit bioelectrical signals.
The researchers prepared a tough but stretchable conductive hydrogel containing polyaniline and polyacrylamide. The crosslinked polymer had a 3D microporous network that, once implanted, allowed nerve cells to enter and adhere, helping restore lost tissue. The team showed that the material could conduct bioelectrical signals through a damaged sciatic nerve removed from a toad. Then, they implanted the hydrogel into rats with sciatic nerve injuries. Two weeks later, the rats’ nerves recovered their bioelectrical properties, and their walking improved compared with untreated rats. Because the electricity-conducting properties of the material improve with irradiation by near-infrared light, which can penetrate tissues, it could be possible to further enhance nerve conduction and recovery in this way, the researchers say.
The authors acknowledge funding from the National Key Research and Development Program of China, the National Natural Science Foundation of China, the Program for Changjiang Scholars and Innovative Research Team in University, and Program B for Outstanding Ph.D. Candidate of Nanjing University.
The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.
###
Follow us:
Media Contact
ACS Newsroom
newsroom@acs.org
100720-artificial-nerve
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
美国化学学会新闻发布:南京大学化院沈群东和医学院朱泽章-帮助修复受损神经的水凝胶
本站小编 Free考研考试/2021-02-15
相关话题/神经 化学
细胞成像再添新技术:鞠熀先教授提出细胞膜蛋白成像的电致化学发光方法
电致化学发光(ECL)集成化学发光高灵敏度和电化学电位可控性的优点,在分析化学与临床医学中得到广泛的应用。其中,基于钌联吡啶衍生物的ECL免疫分析方法是疾病标志物检测的主要手段之一。针对生物检测与生命科学研究的需求,ECL新体系的开发已成为该领域长期的研究主题。量子点(QDs)具有尺寸可控、高发光效 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15现代工学院唐少春教授、葛海雄教授等合作:热纳米压印制备为解决电化学储能电极厚度受限提供新方案
近日,现代工程与应用科学学院唐少春教授课题组与葛海雄教授课题组合作,通过电极结构优化设计,利用热纳米压印制备技术结合微电流电沉积,成功获得高容量、高倍率和长循环寿命的新型阵列结构电极,为解决电化学储能领域电极厚度受限的难题提供了一种新思路和解决方案。相关成果以“VerticallyAlignedan ...南京大学通知公告 本站小编 Free考研考试 2021-02-15化学化工学院夏兴华团队最新成果:欠电位沉积技术“大显身手”,一招制备多种单原子催化剂!
单原子金属催化剂具有独特的配位环境和100%的原子利用率,已经成为催化研究的前沿领域。热力学上,单原子具有高表面能,容易导致原子团聚和催化剂不稳定。常规的单原子合成方法具有能量消耗高、条件苛刻、程序繁琐、不可控和负载量低等问题,严重阻碍了单原子催化剂的发展。因此,在常温常压下,如何简单高效地制备高负 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15医用超声远程激励纳米材料:调控神经可塑性和恢复中脑退行神经元功能
多巴胺能神经元位于中枢神经系统的中脑区域,由此发出的多条神经纤维通路参与认知识别、运动控制、兴奋成瘾等生理活动,是引起动物一切行为反应的基础。中脑黑质多巴胺能神经元变性死亡的后果之一是导致帕金森症,这是一种中老年人常见的神经系统疾病;现有治疗解决方案包括药物治疗、基因治疗和细胞移植、细胞重编程等方案 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15化学化工学院蒋锡群课题组提出克服肿瘤光动力治疗乏氧问题的新方法
光动力疗法(PDT)是一种重要的癌症治疗方法,它是通过光和光敏剂产生活性氧(ROS)来特异性杀死癌细胞,它具有全身毒性小,治疗抵抗力低和侵入性小等优点。近年来,分级光动力疗法(fPDT)被开发出来用于来进一步提高治疗的安全性和有效性,分级光动力疗法类似于临床分级放射疗法,在肿瘤区域中进行多次照射以达 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15化学化工学院潘毅课题组在廉价氟源开发方面取得系列进展
含氟有机化合物在农药、医药以及材料领域具有十分广泛的应用。尽管在过去的几十年年里三氟甲基化反应研究取得了很大进展,但是现有的氟化试剂仍然存在合成步骤复杂、获取不便、原料昂贵、难以保存和大规模使用受限等问题。潘毅教授课题组长期致力于有机氟化学的研究,最近,该团队在廉价氟源的活化方面取得了系列成果(An ...南京大学通知公告 本站小编 Free考研考试 2021-02-15能量转换型微机器人递送神经细胞和远程调控分化
生物医用材料在药物靶向递送、生物活体成像、细胞再生分化等领域取得了蓬勃发展。能量转换材料是化学、材料、物理、能源多学科交叉研究的前沿之一,在神经科学领域的应用方兴未艾。中枢神经系统中大量神经细胞构成网络或回路,负责信息的传递、储存、整合加工,是学习、运动、记忆的基础。帕金森症和阿尔茨海默症等疾病中, ...南京大学通知公告 本站小编 Free考研考试 2021-02-15《中国科学:化学》、《Science China Chemistry》分别出版中英文专刊庆祝南京大学化学学科创立100周年
南京大学化学化工学院是我国最早设立的化学院系之一。一个世纪以来,学院秉承"诚朴雄伟,励学敦行"的校训,以及"严谨、求是、创新、奉献"的优良传统,始终面向世界科学前沿、面向国家战略需求,研以致用,以社会发展为己任,取得了一系列重要的科研成果,成为蜚声海内外的人才培养和科学研究基地。为庆祝南京大学化学学 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15化学化工学院郑佑轩课题组在手性发光材料领域取得系列进展
手性发光材料能够分别发出左、右手圆偏振光(CPL),在圆偏振电致发光器件(CP-OLED)和3D显示有潜在的应用价值。非对称g因子是衡量其非对称发光能力的关键,而现有的CPL材料普遍g因子小,影响了其在3D显示中的应用。化学化工学院郑佑轩课题组在国内率先开展了手性发光材料CP-OLED性能的研究,在 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15砥砺漫漫,百年辉煌:Nature推出南京大学化学化工学院百年院庆特刊
自1920年南京高等师范学校独立设置化学系以来,南京大学化学学科已走过百年历程。秉承“诚朴雄伟,励学敦行”的校训,以及“严谨、求是、创新、奉献”的优良传统,由化学学科发展而来的南京大学化学化工学院,已经成为蜚声海内外的人才培养和科学研究基地。百年砥砺,薪火相传,一代代化院人风雨无阻,勤勉前行,在中华 ...南京大学通知公告 本站小编 Free考研考试 2021-02-15