此外,过去30多年以来,人们高度关注具有3d族过渡金属化合物的物理性质,其原因是该类元素中的d轨道电子具有强关联特性,其电子往往既表现出局域化特性,同时又有巡游性。局域化特性赋予这些原子一定的磁矩,而迅游性会带来导电性。目前发现的两大类非常规高温超导体,即铜氧化物超导体和铁基超导体都属于这种类型。这些材料中的磁性以丰富多彩的方式表现出来,有长程反铁磁有序态,也有长程反铁磁有序被破坏以后的自旋涨落态,还有奇异的量子自旋液态(这些自旋或磁矩通过量子涨落形式存在配对单态,即便在零温极限下)。普林斯顿大学著名的理论物理学家,诺贝尔奖获得者Phillip Anderson曾经预言铜氧化物的基态就是这种具有莫特属性的量子自旋液态;往这种自旋液态中掺入空穴,使得处于强关联的电子松动起来,就会出现高温超导。这个超导图像当然是革命性的,完全突破了原来BCS理论的假设和范畴,只可惜目前发现的量子自旋液态材料并不多,即便有屈指可数的几个,也很难通过掺杂或高压方式诱导出超导电性。
闻海虎教授团队最近在一种具有奇异特性的铁基绝缘体材料CsFe4-xSe4中,通过高压方式诱导出非常规超导电性。实验发现该材料尽管具有绝缘性,但是其规律不能用能带绝缘体公式进行拟合,反而可以用三维的变程跳跃模型(通常用于描述关联电子材料或莫特绝缘体性质)进行描述;极低温比热存在一个明显的线性项C/T(T=0),这是通常能带绝缘体所不应该具有的性质;磁化强度随温度的曲线也没有发现磁有序相变或者满足居里-外斯顺磁性的规律。结合电阻、比热和磁化数据,他们认为这些属性与具有莫特属性的量子自旋液态吻合。在其上诱导出非常规超导,将会促进其他理论和实验的进一步研究,对高温超导机制研究具有重要启发和指导意义。该工作最近刚刚在美国物理学会的杂志Physical Review X上面发表出来【Phys. Rev. X 10, 041008 (2020)】。图1给出了这种物理图像的示意图,即超导电性出现在具有量子磁性涨落属性的莫特绝缘体背景之上。
![闻](https://news.nju.edu.cn/DFS//file/2020/10/19/2020101914330881176f3kz.jpg)
图1. 超导出现在具有强关联和磁涨落的绝缘体基态背景上(示意图)
该工作是由南京大学闻海虎教授团队独立完成的,第一作者是博士生司进同学,其他合作者有博士生陈冠宇,李庆,祝熙宇副教授和杨欢教授。
此工作得到教育部一流学科建设、国家重点研发项目“量子调控”项目、自然科学基金委和2011计划“人工微结构科学与技术协同创新中心”的支持,在此表示感谢。
文章链接:https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041008