删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
南京农业大学资源与环境科学学院导师教师师资介绍简介-唐仲
/2021-03-27
唐仲,副教授,硕士生导师。
通讯地址:南京农业大学资环学院理科楼 A612
电话:025-83499551
邮箱:tangzhong@njau.edu.cn一、教育及工作经历
2018 至今,南京农业大学,资源与环境科学学院,环境科学系,副教授
(2019-2020,Dartmouth College, Department of Biological Sciences, Visiting Scholar)
2013-2017,南京农业大学,资源与环境科学学院,环境科学系,
讲师
2007-2012,南京农业大学,资源与环境科学学院,植物营养系,
博士
2003-2007,南京农业大学,生命科学学院,生物技术,理学学士二、研究领域及方向
研究领域:植物营养与环境生物学
研究方向:1) 植物重金属吸收、转运与积累的分子机理
2) 甲基砷诱发水稻直穗病的生理与分子机制
3) 植物重金属积累阻控途径与分子机理三、主持科研项目
1、国家自然科学基金面上项目 (31972500)
2、国家重点研发计划项目课题 (2016YFD0100704)
1
3、国家重点研发计划项目课题 (2018YFD0800700)
4、国家自然科学基金青年项目 (31401936)
5、中央高校基本科研业务费项目(KYZ201873)
四、发表论文
1. Tang, Z., Chen, Y., Miller, A.J., and Zhao, F.-J. (2019). The C-type ATP- binding
cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice.
Plant and Cell Physiology.
2. Tang, Z., Cai, H., Li, J., Lv, Y., Zhang, W., and Zhao, F.-J. (2017a). Allelic variation of
NtNramp5 associated with cultivar variation in cadmium accumulation in tobacco. Plant and Cell
Physiology 58(9), 1583-1593.
3. Tang, Z., Chen, Y., Chen, F., Ji, Y., and Zhao, F.-J. (2017b). OsPTR7 (OsNPF8.1), a
Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice
Grain. Plant and Cell Physiology 58(5), 904-913. doi: 10.1093/pcp/pcx029.
4. Tang, Z., Kang, Y., Wang, P., and Zhao, F.-J. (2016a). Phytotoxicity and
detoxification mechanism differ among inorganic and methylated arsenic species in
Arabidopsis thaliana. Plant and Soil 401(1-2), 243-257. doi: 10.1007/s11104-015- 2739-3.
5. Tang, Z., Lv, Y., Chen, F., Zhang, W., Rosen, B.P., and Zhao, F.-J. (2016b). Arsenic
Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase
Gene Increases Arsenic Phytotoxicity. Journal of Agricultural and Food Chemistry 64(13), 2674-2681.
doi: 10.1021/acs.jafc.6b00462.
6. Tang, Z., Fan, X., Li, Q., Feng, H., Miller, A.J., Shen, Q., et al. (2012).
Knockdown of a Rice Stelar Nitrate Transporter Alters Long-Distance Translocation But Not Root
Influx. Plant Physiology 160(4), 2052-2063. doi: 10.1104/pp.112.204461.
7. Wang, C., Tang, Z., Zhuang, J.-Y., Tang, Z., Huang, X.-Y., and Zhao, F.-J. (2019). Genetic
mapping of ionomic quantitative trait loci in rice grain and straw reveals OsMOT1; 1
as the putative causal gene for a molybdenum QTL qMo8.
2
Molecular Genetics and Genomics, 1-17.
8. Zhang, L., Wu, J., Tang, Z., Huang, X.-Y., Wang, X., Salt, D.E., et al. (2019). Variation in
the BrHMA3 coding region controls natural variation in cadmium accumulation in Brassica
rapa vegetables. Journal of experimental botany 70(20), 5865- 5878.
9. Lu, C., Zhang, L., Tang, Z., Huang, X.-Y., Ma, J.F., and Zhao, F.-J. (2019). Producing
cadmium-free Indica rice by overexpressing OsHMA3. Environment international 126,
619-626. doi: 10.1016/j.envint.2019.03.004.
10. Guo, A., Ding, L., Tang, Z., Zhao, Z., and Duan, G. (2019). Microbial response to
CaCO3 application in an acid soil in southern China. Journal of environmental sciences
(China) 79, 321-329. doi: 10.1016/j.jes.2018.12.007.
11. Sui, F., Zhao, D., Zhu, H., Gong, Y., Tang, Z., Huang, X.-Y., et al. (2019). Map-based cloning
of a new total loss-of-function allele of OsHMA3 causing high cadmium accumulation in
rice grain. Journal of experimental botany. doi: 10.1093/jxb/erz093.
12. Wang, M., Tang, Z., Chen, X.-P., Wang, X., Zhou, W.-X., Tang, Z., et al. (2019). Water
management impacts the soil microbial communities and total arsenic and methylated arsenicals in
rice grains. Environmental pollution (Barking, Essex : 1987) 247, 736-744. doi:
10.1016/j.envpol.2019.01.043.
13. Sui, F.-Q., Chang, J.-D., Tang, Z., Liu, W.-J., Huang, X.-Y., and Zhao, F.-J. (2018). Nramp5
expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize.
Plant and Soil 433(1-2), 377-389. doi: 10.1007/s11104- 018-3849-5.
14. Sun, S.-K., Chen, Y., Che, J., Konishi, N., Tang, Z., Miller, A.J., et al. (2018). Decreasing
arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite
radial transport in roots. The New phytologist. doi: 10.1111/nph.15190.
15. Guo, A., Ding, L., Tang, Z., Zhao, Z., and Duan, G. (2018). Microbial response to
CaCO3 application in an acid soil in southern China. Journal of
3
Environmental Sciences. doi: https://doi.org/10.1016/j.jes.2018.12.007.
16. Wang, P., Xu, X., Tang, Z., Zhang, W., Huang, X.-Y., and Zhao, F.-J. (2018). OsWRKY28
Regulates Phosphate and Arsenate Accumulation, Root System Architecture and Fertility
in Rice. Frontiers in plant science 9, 1330-1330. doi: 10.3389/fpls.2018.01330.
17. Chen, Y., Sun, S.-K., Tang, Z., Liu, G., Moore, K.L., Maathuis, F.J.M., et al. (2017). The
Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by
lateral roots in rice. Journal of Experimental Botany 68(11), 3007- 3016. doi: 10.1093/jxb/erx165.
18. Xu, J., Shi, S., Wang, L., Tang, Z., Lv, T., Zhu, X., et al. (2017). OsHAC4 is critical for
arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist,
10.1111/nph.14572. doi: 10.1111/nph.14572.
19. Duan, G., Shao, G., Tang, Z., Chen, H., Wang, B., Tang, Z., et al. (2017). Genotypic and
Environmental Variations in Grain Cadmium and Arsenic Concentrations Among a
Panel of High Yielding Rice Cultivars. Rice 10(1), 9. doi: 10.1186/s12284-017-0149-2.
20. Fan, X., Tang, Z., Tan, Y., Zhang, Y., Luo, B., Yang, M., et al. (2016).
Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields.
Proceedings of the National Academy of Sciences of the United States of America
113(26), 7118-7123. doi: 10.1073/pnas.1525184113.
21. Li, C., Tang, Z., Wei, J., Qu, H., Xie, Y., and Xu, G. (2016). The OsAMT1.1 gene functions in
ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges.
Journal of Genetics and Genomics 43(11), 639-649. doi: https://doi.org/10.1016/j.jgg.2016.11.001.
22. Shi, S., Wang, T., Chen, Z., Tang, Z., Wu, Z., Salt, D.E., et al. (2016).
OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation.
Plant Physiology 172(3), 1708-1719. doi: 10.1104/pp.16.01332.
23. Yan, J., Wang, P., Wang, P., Yang, M., Lian, X., Tang, Z., et al. (2016). A loss-of-function
allele of OsHMA3 associated with high cadmium accumulation in
4
shoots and grain of Japonica rice cultivars. Plant Cell and Environment 39(9), 1941- 1954. doi:
10.1111/pce.12747.
24. Zhao, F.-J., Ma, Y., Zhu, Y.-G., Tang, Z., and McGrath, S.P. (2015). Soil Contamination in
China: Current Status and Mitigation Strategies. Environmental Science & Technology 49(2),
750-759. doi: 10.1021/es5047099.
25. Li, Q., Tang, Z., Hu, Y., Yu, L., Liu, Z., and Xu, G. (2014). Functional analyses
of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant
Helianthus tuberosus. Molecular Biology Reports 41(8), 5097-5108. doi:
10.1007/s11033-014-3375-3.
26. Ma, R., Shen, J., Wu, J., Tang, Z., Shen, Q., and Zhao, F.-J. (2014). Impact of agronomic
practices on arsenic accumulation and speciation in rice grain. Environmental
Pollution 194, 217-223. doi: 10.1016/j.envpol.2014.08.004.
5