删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Natural versus anthropogenic controls on the dissolved organic matter chemistry in lakes across Chin

本站小编 Free考研考试/2024-01-13

Natural versus anthropogenic controls on the dissolved organic matter chemistry in lakes across China: Insights from optical and molecular level analyses
第一作者: Shang, Yingxin
英文第一作者: Shang, Yingxin
联系作者: Song, Kaishan
英文联系作者: Song, Kaishan
发表年度: 2022
卷: 221
摘要: Dissolved organic matter (DOM) plays an essential role in the global carbon biogeochemical cycle for aquatic ecosystems. The complexity of DOM compounds contributes to the accurate monitoring of its sources and compositions from large-scale patterns to microscopic molecular groups. Here, this study demonstrates the diverse sources and compositions for humic-rich lakes and protein-rich lakes for large-scale regions across China with the linkage to optical components and molecular high-resolution mass spectrometry properties. The total fluorescence intensity of colored DOM (CDOM) for humic-rich lake regions (0.176 Raman unit; R.U.) is significantly (p<0.05) higher than that of the protein-rich lake region (0.084 R.U.). The combined percentages of CDOM absorption variance explained by the anthropogenic and climatic variables across the five lake regions of Northeastern lake region (NLR), Yungui Plateau lake region (YGR), Inner Mongolia-Xinjiang lake region (MXR), Eastern lake region (ELR), and Tibetan-Qinghai Plateau lake region (TQR) were 86.25%, 82.57%, 80.23%, 88.55%, and 87.72% respectively. The averaged relative intensity percentages of CHOS and CHONS formulas from humic-rich lakes (90.831%, 10.561%) were significantly higher than that from the protein-like lakes (47.484%, 5.638%), respectively. The more complex molecular composition with higher aromaticity occurred in the humic-rich lakes than in the protein-rich lakes. The increasing anthropogenic effects would significantly enhance the sources, transformation, and biodegradation of terrestrial DOM and link to the greenhouse gas emission and the carbon cycle in inland waters.
刊物名称: Water Research
参与作者: Y. X. Shang, Z. D. Wen, K. S. Song, G. Liu, F. F. Lai, L. L. Lyu, S. J. Li, H. Tao, J. B. Hou, C. Fang, C. He, Q. Shi and D. He



相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19