删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and

本站小编 Free考研考试/2021-12-12

论文编号:
论文题目: Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data
英文论文题目: Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data
第一作者: 郑兴明
英文第一作者: zhengxingming
联系作者: Chen, Si
英文联系作者: Chen, Si
外单位作者单位:
英文外单位作者单位:
发表年度: 2021
卷: 100
期:
页码:
摘要: Both radar and optical signals are sensitive to the change of surface soil moisture (SSM) and surface roughness properties (such as root mean squared height- RMSH), and the accuracy of retrieved SSM from single radar and optical remote sensing data is influenced by the spatiotemporal change of surface roughness. Here, we attempt to explore a method to simultaneously estimate SSM and RMSH of bare soil by combining optical and radar data, so as to weaken the effect of surface roughness on SSM inversion results. To achieve this goal, two satellite synchronous ground experiments were carried out, collecting 88 sampling plots each with an area of 50 m ? 50 m. Radar backscattering coefficient and spectral reflectance are uniformly corrected to a fixed observation direction and solar incident direction respectively, which can eliminate the difference of satellite signal resulted from various sun-satellite geometry. Combining radar backscattering and optical reflectance model, Sentinel-1 and Sentinel-2 data are used to simultaneously retrieve SSM and RMSH of bared soils, and some conclusions are given as below: 1) a strong correlation is observed for (radar and optical) satellite signals and soil surface parameters (SSM and RMSH); 2) a higher accuracy was obtained by the combined use of optical and radar data, indicated by the decreased root mean squared error of retrieved SSM (-0.045 cm3/cm3) and RMSH (-0.8 cm); 3) the further improvement of retrieved SSM and RMSH was achieved by introducing their initial values, revealing that the prior knowledge of soil properties is also beneficial to improve the retrieval accuracy. This study proposed an framework for simultaneous estimation of SSM and RMSH by combining optical and radar data, and its feasibility is verified by experimental data.
英文摘要: Both radar and optical signals are sensitive to the change of surface soil moisture (SSM) and surface roughness properties (such as root mean squared height- RMSH), and the accuracy of retrieved SSM from single radar and optical remote sensing data is influenced by the spatiotemporal change of surface roughness. Here, we attempt to explore a method to simultaneously estimate SSM and RMSH of bare soil by combining optical and radar data, so as to weaken the effect of surface roughness on SSM inversion results. To achieve this goal, two satellite synchronous ground experiments were carried out, collecting 88 sampling plots each with an area of 50 m ? 50 m. Radar backscattering coefficient and spectral reflectance are uniformly corrected to a fixed observation direction and solar incident direction respectively, which can eliminate the difference of satellite signal resulted from various sun-satellite geometry. Combining radar backscattering and optical reflectance model, Sentinel-1 and Sentinel-2 data are used to simultaneously retrieve SSM and RMSH of bared soils, and some conclusions are given as below: 1) a strong correlation is observed for (radar and optical) satellite signals and soil surface parameters (SSM and RMSH); 2) a higher accuracy was obtained by the combined use of optical and radar data, indicated by the decreased root mean squared error of retrieved SSM (-0.045 cm3/cm3) and RMSH (-0.8 cm); 3) the further improvement of retrieved SSM and RMSH was achieved by introducing their initial values, revealing that the prior knowledge of soil properties is also beneficial to improve the retrieval accuracy. This study proposed an framework for simultaneous estimation of SSM and RMSH by combining optical and radar data, and its feasibility is verified by experimental data.
刊物名称: International Journal of Applied Earth Observation and Geoinformation
英文刊物名称: International Journal of Applied Earth Observation and Geoinformation
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者: X. Zheng, Z. Feng, L. Li, B. Li, T. Jiang, X. Li, X. Li and S. Chen
英文参与作者: X. Zheng, Z. Feng, L. Li, B. Li, T. Jiang, X. Li, X. Li and S. Chen
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19