论文编号: | |
论文题目: | Effects of salinity and temperature on tuber sprouting and growth of Schoenoplectus nipponicus |
英文论文题目: | Effects of salinity and temperature on tuber sprouting and growth of Schoenoplectus nipponicus |
第一作者: | Tang, Haoran |
英文第一作者: | Tang, Haoran |
联系作者: | 娄彦景 |
英文联系作者: | louyanjing |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2021 |
卷: | 12 |
期: | 3 |
页码: | |
摘要: | In a scenario of climate change and intensive land-use change, the issue of salt marsh degradation caused by global warming and soil salinization is becoming more serious. A climate chamber experiment was conducted to examine the responses of tuber sprouting and seedling growth of Schoenoplectus nipponicus to variations in the temperature regimes (20/10, 25/15, 30/20 and 35/25 degrees C; 12-h light/dark 12-h photoperiod) and different salt concentrations (0, 50, 75, and 100 mmol/L salinity). Results showed that the final sprouting percentage decreased with the increase in salinity and increased with the rising temperature. Salinity lower than 50 mmol/L was the most favorable for tuber sprouting. Under high salinity (75 and 100 mmol/L salinity), the inhibition of tuber sprouting at 20/10 degrees C was greater than other temperature regimes. Along the temperature gradients, both plant height and leaf N content increased, and root length decreased under non-saline-alkali conditions, while plant height, leaf N content, and root length declined significantly under salt stress (50, 75, and 100 mmol/L salinity). With the increase in temperature, the production of tubers under the control treatments was enhanced significantly, but that under salt stress declined significantly. Under 0 mmol/L salinity, the accumulation of biomass in various organs increased with rising temperature. Biomass accumulation increased first and then declined for plants grown under salt stress, with a peak value of 25/15 degrees C. Root: shoot ratio was reduced significantly under the combination of high salt stress (75 and 100 mmol/L salinity) and high temperatures (30/20 degrees C and 35/25 degrees C). Our study will contribute to a better understanding of the influence of climate warming and increasing serious human disturbances on this important wetland species. |
英文摘要: | In a scenario of climate change and intensive land-use change, the issue of salt marsh degradation caused by global warming and soil salinization is becoming more serious. A climate chamber experiment was conducted to examine the responses of tuber sprouting and seedling growth of Schoenoplectus nipponicus to variations in the temperature regimes (20/10, 25/15, 30/20 and 35/25 degrees C; 12-h light/dark 12-h photoperiod) and different salt concentrations (0, 50, 75, and 100 mmol/L salinity). Results showed that the final sprouting percentage decreased with the increase in salinity and increased with the rising temperature. Salinity lower than 50 mmol/L was the most favorable for tuber sprouting. Under high salinity (75 and 100 mmol/L salinity), the inhibition of tuber sprouting at 20/10 degrees C was greater than other temperature regimes. Along the temperature gradients, both plant height and leaf N content increased, and root length decreased under non-saline-alkali conditions, while plant height, leaf N content, and root length declined significantly under salt stress (50, 75, and 100 mmol/L salinity). With the increase in temperature, the production of tubers under the control treatments was enhanced significantly, but that under salt stress declined significantly. Under 0 mmol/L salinity, the accumulation of biomass in various organs increased with rising temperature. Biomass accumulation increased first and then declined for plants grown under salt stress, with a peak value of 25/15 degrees C. Root: shoot ratio was reduced significantly under the combination of high salt stress (75 and 100 mmol/L salinity) and high temperatures (30/20 degrees C and 35/25 degrees C). Our study will contribute to a better understanding of the influence of climate warming and increasing serious human disturbances on this important wetland species. |
刊物名称: | Ecosphere |
英文刊物名称: | Ecosphere |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | H. Tang, J. Bai, F. Chen, Y. Liu and Y. Lou |
英文参与作者: | H. Tang, J. Bai, F. Chen, Y. Liu and Y. Lou |
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)