
始于20世纪80年代末90年代初的微流控芯片技术将微加工和微流体技术有机的结合在一起,在方寸大小的芯片上集成样品处理、反应、探测等过程,以实现微米尺度下液体的操控。该技术在集成化、便携化、自动化等方面具有极显著的优势,具有广泛用的应用前景,被誉为21世纪的“世纪技术”。然而,微尺度效应是影响芯片上流体流动的最关键因素之一,这对已有设计理论与方法提出了极大的挑战。基于拓扑优化的微纳结构逆向设计能够综合考虑微尺度效应和结构的功能性、工艺性、集成性,是解决上述需求和所面临挑战性问题的最有效途径之一。
随着现代计算机、数值模拟技术和制造技术的发展,拓扑优化方法于20世纪80年代末期被提出,并在弹性力学等领域得到了普遍发展和应用。流体力学领域的拓扑优化研究始于2003年,而且主要针对简化的定常流动。因此,作者在前期工作中针对具有普遍意义的非定常流动、体力驱动流动和两相流动,创新性的进行了著作中系统论述的流体力学拓扑优化理论,并将其应用于微流控芯片的功能结构拓扑优化和逆向设计,并取得了显著的实际应用效果,这对微流控芯片技术的实用化具有重要意义。
该专著所涉及研究工作得到了前期国家自然科学青年基金、国家自然科学面上基金、国家863计划等项目的支持。
