删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

香港理工大学应用数学系老师教师导师介绍简介-Zhi-An Wang

本站小编 免费考研网/2022-02-01

Zhi-An Wang

Professor

             

Department of Applied Mathematics
Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong
                                                             
Office: TU805, Yip Kit Chuen Building
Email: mawza@polyu.edu.hk
Tel: 852-27666926
Fax: 852-23629045
                                                               

 



I am currently on the editorial board of the following journals: Journal of Mathematical Biology, Discrete and Continuous Dynamical Systems - Series B, Communications in Mathematical Analysis and Applications. You are welcome to contribute your excellent works to these journals.

Research Interests:

  • Modeling and analysis on density-suppressed motility
  • Boundary layers of chemotaxis systems with singular (logarithmic) sensitivity
  • Dynamics of predator-prey systems with non-random motion (preytaxis)
  • Kinetic models of chemotaxis with temporal sensing
  • Traveling waves of chemotaxis and applications
  • Modeling and analysis of chemotaxis with cell population interactions
  • Modeling and analysis of cell movement in tissue
  • Regularization and sigunlarity of chemotaxis models

Publications (peer-reviewed papers + preprints). More information can be found in Google Scholar


Papers (published or accpeted):
  1. H.Y. Peng, Z.A. Wang and C.J. Zhu
    Global weak solutions and asymptotics of a singular PDE-ODE chemotaxis system with discontinuous data,
    Sci. China Math., 65:269-290, 2022. (supported by GRF PolyU 153031/17P and internal grant 4-ZZHY).
  2. Q.Q. Liu, H.Y. Peng and Z.A. Wang
    Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis,
    J. Differential Equations, 413:251-286, 2022. (supported by GRF PolyU 15304720) .
  3. W. Lyu and Z.A. Wang
    Global classical solutions for a class of reaction-diffusion system with density-suppressed motility,
    Electronic Research Archive, 2021.
  4. Z.A. Wang and X. Xu
    Radial spiky steady states of a flux-limited Keller-Segel model: existence, asymptotics and stability,
    Stud. Appl. Math., 2021. DOI: 10.1111/sapm.12474 (supported by GRF grant No. PolyU 153055/18P (P0005472)).
  5. Z.A. Wang
    A kinetic chemotaxis model with internal states and temporal sensing,
    Kinet. Relat. Models, 2021. Doi:10.3934/krm.2021043(supported by GRF grant No. PolyU 153055/18P (P0005472)).
  6. Q.Q. Liu, H.Y. Peng and Z.A. Wang
    Asymptotic stability of diffusion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis,
    SIAM J. Math. Anal, in press, 2021.
  7. Z.A. Wang and L. Wu
    Global solvability of a class of reaction-diffusion systems with cross-diffusion,
    Appl. Math. Lett., 124, Paper No. 107699, 8 pp, 2022.
  8. T. Li and Z.A. Wang
    Traveling wave solutions to the density-suppressed motility model ,
    J. Differential Equations, 301:1-36,2021(RGC GRF grant No. PolyU 15303019 (Project ID P0030816).
  9. S. Ji, Z.A. Wang, T. Xu and J. Yin
    A reducing mechanism on wave speed for chemotaxis systems with degenerate diffusion,
    Calc. Var. Partial Differential Equations, Vol. 60, Paper No. 178, 19 pp, 2021 (supported by GRF PolyU 153055/18P - Q65K).
  10. G. Hong and Z.A. Wang
    Asymptotic stability of exogenous chemotaxis systems with physical boundary conditions,
    Quart. Appl. Math., 79:717-743,2021. https://doi.org/10.1090/qam/1599 , 2021 (supported by GRF PolyU 153031/17P - Q62H and ZZHY from HKPU).
  11. Z.A. Wang
    On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states,
    Math. Methods Appl. Sci., 44:10881-10898, 2021. https://doi.org/10.1002/mma.7455 (supported by GRF grant No. 15303019 - Q75G and UAH0).
  12. Z.A. Wang and X. Xu
    Steady states and pattern formation of the density-suppressed motility model,
    IMA J. Appl. Math., 86:577-603, 2021(supported by RGC grant no. PolyU 15303019 - Q75G).
  13. Z.A. Wang and J. Zheng
    Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities,
    Acta Appl Math., Vol. 171, no. 25, Paper No. 25, 19 pp, 2021. https://doi.org/10.1007/s10440-021-00392-8. (supported by GRF grant No. 15303019 and an internal grant no. UAH0 (P0005472)).
  14. Z.A. Wang and J. Xu
    On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion,
    J. Math. Biol., Vol. 82, no. 1-2, Paper No. 7, 37 pp, 2021. https://doi.org/10.1007/s00285-021-01562-w (supported by PolyU 153298/16P).
  15. G. Hong, H. Peng, Z.A. Wang and C. Zhu
    Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modelling vascular networks,
    J. London Math. Soc., 103:1480-1514, 2021 (supported by PolyU 153055/18P (P0005472) and an internal grant No. ZZKN from HKPU (P0031013)).
  16. D. Wang, Z.A. Wang and K. Zhao
    Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model in multi-dimensions,
    Indiana Univ. Math. J., 70(1):1-47, 2021 (supported by PolyU 153031/17P).
  17. T. Li, D. Wang, F. Wang, Z.A. Wang and K. Zhao
    Large time behavior and diffusion limit for a system of balance laws from chemotaxis in multi-dimensions,
    Comm. Math. Sci., 19:229-272, 2021 (supported by PolyU 153031/17P (Project ID:P0005368) and internal grant ZZHY (Project ID:P0001905)).
  18. J.A. Carrillo, J. Li and Z.A. Wang
    Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability,
    Proc. London Math. Soc., 122:42-68, 2021. doi:10.1112/plms.12319 (supported by PolyU 153031/17P (Project ID P0005368)).
  19. H.Y. Jin and Z.A. Wang
    Global stability and spatio-temporal patterns of predator-prey systems with density-dependent motion,
    Euro. Jnl of Applied Mathematics, 32:652-682, 2021 (supported by PolyU 153298/16P).
  20. H.Y. Jin and Z.A. Wang
    The Keller-Segel system with logistic growth and signal-dependent motility,
    Disc. Cont. Dyn. Syst.-B, 26(6): 3023-3041, 2021. doi: 10.3934/dcdsb.2020218 (supported by PolyU No. 15303019 (Project Q75G)).
  21. Q. Hou, T.-C. Lin and Z.A. Wang
    On a singularly perturbed semi-linear problem with Robin boundary conditions ,
    Disc. Cont. Dyn. Syst.-B, 26(1): 401-414, 2021(supported by PolyU 153031/17P (Project ID P0005368) and an internal grant P0001905).
  22. H.Y. Jin, S. Shi and Z.A. Wang
    Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility,
    J. Differential Equations, 269:6758-6793, 2020. (supported by PolyU No. 15303019 (Project Q75G)).
  23. C.C. Lee, Z.A. Wang and W. Yang
    Boundary-layer profile of a singularly perturbed non-local semi-linear problem arising in chemotaxis ,
    Nonlinearity, 33:5111-5141, 2020(supported by PolyU 153032/15P (Project ID P0005368)).
  24. H.Y. Jin and Z.A. Wang
    Critical mass on the Keller-Segel system with signal-dependent motility,
    Proc. Amer. Math. Soc., 148:4855-4873,2020(supported by an internal grant ZZHY).
  25. Y. Cai, Q. Cao and Z.A. Wang
    Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis,
    Applicable Analysis, https://doi.org/10.1080/00036811.2020.1728259, 2020(supported by GRF grant PolyU 153298/16P (Project ID P0005162)).
  26. B. Perthame, N. Vauchelet and Z.A. Wang
    The flux limited Keller-Segel system: properties and derivation from kinetic equations,
    Rev. Mat. Iberoam., 36: 357-386, 2020. Doi 10.4171/rmi/1132 (supported by PolyU 153031/17P and an internal grant No. ZZHY).
  27. J.Y. Li and Z.A. Wang
    Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space,
    J. Differential Equations, 268:6940-6970, 2020 (supported by PolyU153032/15P).
  28. M. Ma, R. Peng and Z. Wang
    Stationary and non-stationary patterns of the density-suppressed motility model,
    Phys. D, 402, 132259, 2020 (supported by PolyU153298/16P (Q56F)).
  29. H.Y. Peng and Z. Wang
    On a parabolic-hyperbolic chemotaxis system with discontinuous data: well-posedness, stability and regularity,
    J. Differential Equations, 268: 4374-4415, 2020. (supported by PolyU 153032/15P and ZZHY).
  30. J.A. Carrillo, X. Chen, Q. Wang, Z. Wang and L. Zhang
    Phase transitions and bump solutions of the Keller-Segel model with volume exclusion ,
    SIAM J. Appl. Math., 80:232-261, 2020 (supported by PolyU 153031/17P).
  31. H.Y. Jin and Z. Wang
    Global stabilization of the full attraction-repulsion Keller-Segel system,
    Disc. Cont. Dyn. Syst., 40:3509-3527,2020. (special volume for W-.M. Ni's 70th birthday)(supported by PolyU 5091/13P).
  32. J. Wang, Z. Wang and W. Yang
    Uniqueness and convergence on equilibria of the Keller-Segel system with subcritical mass,
    Comm. Partial Differential Equations, 44:545-572, 2019 (supported by internal grant PolyU 153041/15P).
  33. L.G. Rebholz, D. Wang. Z. Wang, K. Zhao and C. Zerfas
    Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions,
    Disc. Cont. Dyn. Syst., 39:3789-3838, 2019 (supported by PolyU 153031/17P).
  34. Q. Hou and Z.A. Wang
    Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane,
    J. Math. Pures Appl., 130:251-287, 2019 (supported by PolyU 153031/17P).
  35. C. Li, R. Peng and Z.A. Wang
    On a diffusive SIS epidemic model with mass action mechanism and birth-death effect: analysis, simulations and comparison with other mechanisms,
    SIAM J. Appl. Math., 78:2129-2153, 2018 (supported by PolyU153298/16P).
  36. H.Y. Jin, Y.-J. Kim and Z.A. Wang
    Boundedness, stabilization and pattern formation driven by density-suppressed motility,
    SIAM J. Appl. Math., 78:1632-1657, 2018. (published on June 2018, supported by PolyU 153032/15).
  37. Q.Q. Hou, C.J. Liu, Y.G. Wang and Z.A. Wang
    Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case,
    SIAM J. Math. Anal., 50:3058-3091, 2018. (published on June 2018, supported by PolyU 153032/15P)
  38. V. Martinez, Z.A. Wang and K. Zhao
    Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology,
    Indiana Univ. Math. J., 67:1383-1424, 2018 (supported by PolyU 153032/15P).
  39. H.Y. Peng and Z.A. Wang
    Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations,
    J. Differential Equations, 265: 2577-2613, 2018. (published on September 2018, supported by PolyU 153032/15P)
  40. H.Y. Jin and Z.A. Wang
    A dual-gradient chemotaxis system modeling the spontaneous aggregation of microglia in Alzheimer's disease,
    Analysis and Applications, 16:307-338, 2018. (published on May 2018, supported by PolyU 5091/13P)
  41. H. Peng, Z.A. Wang, K. Zhao and C.J. Zhu
    Boundary layers and stabilization of the singular Keller-Segel system,
    Kinetic and Related Models, 11: 1085-1123, 2018. (published on October 2018, supported by PolyU 153032/15P)
  42. H.Y. Jin and Z.A. Wang
    Global stability of prey-taxis systems,
    J. Differential Equations, 262:1257-1290, 2017. (published on October 2016, supported by PolyU 153298/16P)
  43. M. Ma and Z.A. Wang
    Patterns in a generalized volume-filling chemotaxis model with cell proliferation,
    Analysis and Applications, 15:83-106, 2017. (published on September 2015, supported by G-YBCS, A-PL15 and PolyU 153032/15P) .
  44. Q.Q. Hou, Z.A. Wang and K. Zhao
    Boundary layer problem on a hyperbolic system arising from chemotaxis,
    J. Differential Equations, 261:5035-5070, 2016.
  45. Z.A. Wang, Z. Xiang and P. Yu
    Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis,
    J. Differential Equations, 260:2225-2258, 2016.
  46. H. Jin and Z.A. Wang
    Boundedness, blowup and critical mass phenomenon in competing chemotaxis,
    J. Differential Equations, 260:162-196, 2016.
  47. M. Ma and Z.A. Wang
    Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect,
    Nonlinearity, 28: 2639-2660, 2015.
  48. M. Mei, H. Peng and Z.A. Wang
    Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis,
    J. Differential Equations, 259: 5168-5191, 2015.
  49. W. Ding and Z.A. Wang
    Global existence and asymptotic behavior of the Boussinesq-Burgers system,
    J. Math. Anal. Appl., 424: 584-597, 2015.
  50. S.B. Ai and Z.A. Wang
    Traveling bands for the Keller-Segel model with population growth,
    Mathematical Biosciences and Engineering, 12:717-737, 2015.
  51. S.B. Ai, W.Z. Huang and Z.A. Wang
    Reaction, diffusion and chemotaxis in wave propagation,
    Discrete Contin. Dyn. Syst.-Series B, 21(1):1-21, 2015.
  52. H.Y. Jin, Z.A. Wang and L. Xiong
    Cauchy problem of the Magnetohydrodynamic Burgers (MHD-Burgers) system,
    Commu. Math. Sci., 13(1): 127-151, 2015.
  53. H.Y. Jin and Z.A. Wang
    Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model,
    Math. Methods Appl. Sci., 38:444-457, 2015 .
  54. J. Li. T. Li and Z.A. Wang
    Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity,
    Math. Models Methods Appl. Sci., 24(14): 2819-2849, 2014.
  55. T.C. Lin and Z.A. Wang
    Development of traveling waves in an interacting two-species chemotaxis model,
    Discrete Contin. Dyn. Syst., 34(7):2907-2927, 2014.
  56. P. Liu, J.P. Shi and Z.A. Wang
    Pattern formation of the attraction-repulsion Keller-Segel system,
    Discrete Contin. Dyn. Syst-Series B, 18(10): 2597-2625, 2013.
  57. H.Y. Jin, J. Li and Z.A. Wang
    Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity,
    J. Differential Equations, 255:193-219, 2013 .
  58. Z.A. Wang and K. Zhao
    Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model,
    Comm. Pure Appl. Anal., 12(6): 3027-3046, 2013.
  59. Z.A. Wang
    Mathematics of traveling waves in chemotaxis,
    Discrete Contin. Dyn. Syst-Series B.,18(3): 601-641, 2013.
  60. Y.S. Tao, L.H. Wang and Z.A. Wang
    Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension,
    Discrete Contin. Dyn. Syst-Series B., 18(3): 821-845, 2013.
  61. Y.S. Tao and Z.A. Wang
    Competing effects of attraction vs. repulsion in chemotaxis,
    Math. Models Methods Appl. Sci., 23: 1-36, 2013.
  62. Z.A. Wang, M. Winkler and D. Wrzosek
    Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume filling effect and degenerate diffusion,
    SIAM J. Math. Anal., 44: 3502-3525, 2012.
  63. T. Li and Z.A. Wang
    Steadily propagating waves of a chemotaxis model,
    Mathematical Biosciences, 240: 161-168, 2012
  64. M.J. Ma, C.H. Ou and Z.A. Wang
    Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability,
    SIAM J. Appl. Math., 72: 740-766, 2012.
  65. Z.A. Wang
    Wavefront of an angiogenesis model,
    Discrete Contin. Dyn. Syst-Series B., 17(8): 2849-2860, 2012.
  66. Z.A. Wang, M. Winkler and D. Wrzosek
    Singularity formation in chemotaxis systems with volume-filling effect,
    Nonlinearity, 24: 3279-3297, 2011.
  67. J. Liu and Z.A. Wang
    Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension,
    J. Biol. Dyn, 6: 31-41, 2012 .
  68. T. Li and Z.A. Wang
    Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,
    J. Differential Equations, 250: 1310-1333, 2011.
  69. T. Li and Z.A. Wang
    Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,
    Math. Models Methods. Appl. Sci., 20: 1967-1998, 2010.
  70. Z.A. Wang
    On chemotaxis models with cell population interactions,
    Math. Model Nat. Phenom.,5:173-190, 2010
  71. R. Lui and Z.A. Wang
    Traveling wave solutions from microscopic to macroscopic chemotaxis models,
    J. Math. Biol, 61: 739-761, 2010.
  72. T. Hillen, P. Hinow and Z.A. Wang
    Mathematical analysis of a kinetic model for cell movement in network tissues,
    Discrete Contin. Dyn. Syst-Series B, 14:1055-1080, 2010.
  73. Y.S. Choi and Z.A. Wang
    Prevention of blow up in chemotaxis by fast diffusion,
    J. Math. Anal. Appl., 362: 553-564, 2010.
  74. T. Li and Z.A. Wang
    Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,
    SIAM J. Appl. Math., 70: 1522-1541, 2009.
  75. Z.A. Wang, T. Hillen and M. Li
    Mesenchymal motion models in one dimension,
    SIAM J. Appl. Math., 69: 375-397, 2008.
  76. Z.H. Guo, M.N. Jiang, Z.A. Wang and G.F. Zheng
    Existence of global weak solutions to the Camassa-Holm equation,
    Discrete Contin. Dyn. Syst., 21: 883-906, 2008.
  77. Z.A. Wang and T. Hillen
    Shock formation in a chemotaxis model,
    Math. Methods. Appl. Sci., 31: 45-70, 2008.
  78. Z.A. Wang and T. Hillen
    Classical solutions and pattern formation for a volume filling chemotaxis model,
    Chaos 17, 037108, 2007.
  79. Z.A. Wang and H. Sang
    Asymptotic profile to the nonlinear dissipative evolution equations with conservation form ,
    Math. Methods. Appl. Sci., 20): 977-994, 2007.
  80. Z.A. Wang
    Optimal convergence rates toward diffusion wave of solutions to non-linear evolution equations with conservational form,
    J. Math. Anal. Appl., 319: 740-763, 2006.
  81. Z.A. Wang
    Optimal decay rates of solutions to dissipative nonlinear evolution equations with ellipticity,
    Z. Angew. Math. Phys., 57: 399-418, 2006.
  82. Z.A. Wang
    Large time behaviors of solutions for a dissipative nonlinear evolution system with conservation form,
    J. Phys. A: Math. Gen., 38: 10955-10969, 2005.
  83. C.J. Zhu and Z.A. Wang
    Decay rates of solutions to dissipative nonlinear evolution equations with ellipticity,
    Z. Angew. Math. Phys., 55: 994-1014, 2004.
  84. Z.A. Wang, C.J. Zhu
    Stability of the rarefaction wave for the generalized KdV-Burgers equation,
    Acta Math Scientia., 22B(3): 319-328, 2002.

Preprints (available upon request):
  1. H. Tang and Z.A. Wang
    Classical pathwise solutions to nonlinear aggregation-diffusion equations with random birth-death dynamics ,
    Submitted, 2019.
  2. L. Battaglia, A. Jevnikar, Z.A. Wang, and W. Yang
    Prescribing Gaussian curvature on surfaces with conical singularities and geodesic boundary,
    Submitted, 2020.
  3. R. Hou, Z.A. Wang, W-B. Xu, Z. Zhang
    The uniform spreading speed in cooperative systems with non-uniform initial data,
    Submitted, 2020.
  4. Z.A. Wang and L. Wu
    Lotka-Volterra diffusion-advection competition system with dynamical resources,
    Submitted, 2021.
  5. Z.A. Wang and W.-B. Xu
    Acceleration of Propagation in a chemotaxis-growth system with slowly decaying initial data,
    Submitted, 2021.
  6. L. Mu, W. Tao and Z.A. Wang
    Global dynamics and spatiotemporal heterogeneity of accelerated preytaxis models,
    Submitted, 2021.
  7. W. Lyu and Z.A. Wang
    Logistic damping effect in chemotaxis models with density-suppressed motility,
    Submitted, 2021.

 

相关话题/数学