删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

香港浸会大学HongKongBaptistUniversity数学系老师简介-Dr LAM, Kei Fong Andrew 林其锋博士

本站小编 Free考研考试/2022-02-04

Dr LAM, Kei Fong Andrew 林其鋒博士
Assistant Professor
PhD, University of Warwick
MSc, University of Warwick
MMath, University of Warwick

akflam [at] hkbu.edu.hk
FSC 1210
(852) 3411-7622
andrewkflam.github.io
Google Scholar
ResearchGate
Scopus
ORCID



Current Research Interests Phase field models, mathematical modelling, analysis of partial differential equations, optimal control, inverse problems.

Selected Publications Sparse optimal control of a phase field tumour model with mechanical effects
with H. Garcke and A. Signori
SIAM J. Control. Optim., 59:1555-1580 (2021)
Open access

Strong well-posedness and inverse identification problem of a non-local phase field tumor model with degenerate mobilities
with S. Frigeri and A. Signori
in European Jnl. Appl. Math. (2021)
Open access

Phase-field dynamics with transfer of materials: The Cahn-Hillard equation with reaction rate dependent dynamic boundary conditions
with P. Knopf, C. Liu and S. Metzger
in ESAIM: M2AN, 55:229-282 (2021)
ArXiv preprint arXiv:2003.12983

On a phase field model of Cahn-Hilliard type for tumour growth with mechanical effects.
with H. Garcke and A. Signori
in Nonlinear Anal. Real World Appl., 57:103192 (2021)
ArXiv preprint arxiv:1912.01945

Parameter identification via optimal control for a Cahn-Hilliard-chemotaxis system with a variable mobility.
with C. Kahle
in Appl. Math. Optim., 82:63--104 (2020)
ArXiv preprint arxiv:1707.06853

Convergence of a Robin boundary approximation for a Cahn-Hilliard system with dynamic boundary conditions.
with P. Knopf
in Nonlinearity 33:4191--4235 (2020)
ArXiv preprint arxiv:1908.06124

Weak and stationary solutions to a Cahn-Hilliard-Brinkman model with singular potentials and source terms.
with M. Ebenbeck
in Adv. Nonlinear Anal., 10:24--65 (2020)
Open access

Consistency of a phase field regularization for an inverse problem governed by a quasilinear Maxwell system.
with I. Yousept
in Inverse Problems, 36 (2020) 045011 (33pp)
Open access

Convergence to equilibrium for a bulk-surface Allen-Cahn system coupled through a Robin boundary condition.
with H. Wu
in Discrete Contin. Dyn. Syst., 40:147--1878 (2020)
ArXiv preprint arxiv:1902.07020

Phase field modelling of surfactants in multi-phase flow.
with O.R.A. Dunbar and B. Stinner
in Interface Free Bound., 21:495--547 (2019)
ArXiv preprint arxiv:1810.12274

Bayesian parameter identification in Cahn-Hilliard models for biological growth.
with C. Kahle, J. Latz and E. Ullmann
in SIAM/ASA J. Uncertainty Quantification, 7:526--552 (2019)
ArXiv preprint arxiv:1805.03304

On a coupled bulk-surface Allen-Cahn system with non-trivial transmission condition and its approximation by a Robin boundary condition.
with P. Colli and T. Fukao
in Nonlinear Anal., 184:116--147 (2019)
ArXiv preprint arxiv:1803.0829

A phase field approach to shape optimization in Navier--Stokes flow with integral state constraint.
with H. Garcke, M. Hinze and C. Kahle
in Adv. Comput. Math., 44(5):1345--1383 (2018)
ArXiv preprint arxiv:1702.03855

Optimal control of treatment time in a diffuse interface model of tumor growth.
with H. Garcke and E. Rocca
in Appl. Math. Optim., 78:495--544 (2018)
ArXiv preprint arxiv:1608.00488

Cahn-Hlliard inpainting with double obstacle potential.
with H. Garcke and V. Styles
in SIAM J. Imaging Sci., 11(3):2064--2089 (2018)
ArXiv preprint arxiv:1801.05527

On a multi-species Cahn-Hilliard-Darcy tumor growth model with singular potentials.
with S. Frigeri, E. Rocca and G. Schimperna
in Commun. Math. Sci., 16(3):821--856 (2018)
ArXiv preprint arxiv:1709.01469



相关话题/博士 数学系 香港浸会大学