删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Structural change in AR(1) models (2001)_香港中文大学

香港中文大学 辅仁网/2017-07-06

閹存劒璐熺拠鍙ュ敩鐞涱煉绱濋崚鍡曢煩鐠囧墽鈻肩挧鍕灐闁剧偓甯寸亸杈厴閼惧嘲褰�40%閹绘劖鍨氱挧姘舵尪閿涳拷
閹恒劌绠嶇挧姘舵尪閺夊啰娉妴鍌濐嚦娴狅綀銆冮崣顖炩偓姘崇箖娴滄帟浠堢純鎴犵搼闁柨绶炴稉鐑樻拱缁旀瑦甯归獮鍨吅娴肩姭鈧钒IP娴兼艾鎲抽垾婵撶礉閻€劍鍩涢柅姘崇箖鐠囧彞鍞悰銊ф畱閸掑棔闊╅柧鐐复閹存牗鎹i幎銉ㄥ枠娑旀澘鎮楅敍宀冾嚦娴狅綀銆冮懢宄板絿40%閹绘劖鍨氶妴鍌濐嚦娴狅綀銆冪拹顓濇嫳閺堫剛鐝禒璁崇秿娴溠冩惂閿涘苯娼庢禍顐㈠綀9閹舵ǜ鈧倸鐨㈤崚鍡曢煩闁剧偓甯撮妴浣规崳閹躲儱娴橀悧鍥╃搼閿涘苯褰傞崚鏉款劅閺嵚ゎ啈閸ф稏鈧胶娅ㄦ惔锕佸垱閸氀佲偓浣镐簳閸楁哎鈧礁浜曟穱掳鈧傅Q缁屾椽妫块妴浣虹叀娑斿簺鈧浇鐪撮悺锝囩搼閸氬嫬銇囬獮鍐插酱閵嗭拷
Structural change in AR(1) models
Publication in refereed journal


香港中文大学研究人员 ( 现职)


全文


引用次数
Web of Sciencehttp://aims.cuhk.edu.hk/converis/portal/Publication/32WOS source URL

其它资讯

摘要This paper investigates the consistency of the least squares estimators and derives their limiting distributions in an AR(1) model with a single structural break of unknown timing. Let beta (1) and beta (2) be the preshift and postshift AR parameter, respectively. Three cases are considered: (i) \ beta (1)\ < 1 and beta (2)\ < 1; (ii) beta (1)\ < 1 and (2) = 1; and (iii) beta (1) = 1 and \ beta (2)\ < 1. Cases (ii) and (iii) are of particular interest but are rarely discussed in the literature. Surprising results are that, in both cases, regardless of the location of the change-point estimate, the unit root can always be consistently estimated and the residual sum of squares divided by the sample size converges to a discontinuous function of the change point. In case (iii), <(beta )over cap>(2) does not converge to beta (2) whenever the change-point estimate is lower than the true change point. Further, the limiting distribution of the break-point estimator for shrinking break is asymmetric for case (ii), whereas those for cases (i) and (iii) are symmetric. The appropriate shrinking rate is found to be different in all cases.

着者Chong TTL
期刊名称Econometric Theory
出版年份2001
月份2
日期1
卷号17
期次1
出版社CAMBRIDGE UNIV PRESS
页次87 - 155
国际标準期刊号0266-4666
电子国际标準期刊号1469-4360
语言英式英语

Web of Science 学科类别Business & Economics; Economics; ECONOMICS; Mathematical Methods In Social Sciences; Mathematics; Mathematics, Interdisciplinary Applications; MATHEMATICS, INTERDISCIPLINARY APPLICATIONS; Social Sciences, Mathematical Methods; SOCIAL SCIENCES, MATHEMATICAL METHODS; Statistics & Probability; STATISTICS & PROBABILITY

閹兼粎鍌�2娑撳洨顫掗懓鍐埡閼板啳鐦夐悽闈涚摍娑旓讣绱欐0妯虹氨閿涘矁顫嬫0鎴礆閸忓秷鍨傞悽锟�
婢堆囧劥閸掑棛顏㈤棄瀣厴閺勵垳顑囨稉鈧▎陇鈧啰鐖洪敍灞筋嚠娴滃骸顩ф担鏇熺叀閹靛彞绗撴稉姘愁嚦閹稿洤鐣鹃弫娆愭綏閿涘本鍨ㄧ拋鍛婃箒瀵板牆顦块悿鎴︽6閵嗕境ree婢归€涙〃閸掑棗顒熸稊鐘电秹閼板啰鐖哄ǎ杈偓鏇氱瑩娑撴俺顕虫潏鍛嚤20楠炶揪绱濋幀鑽ょ波娴滃棜绉寸€圭偟鏁ら惃鍕瘹鐎规碍鏆€閺夋劖鐓$拠銏℃煙濞夋洖寮锋径宥勭瘎閺傝纭堕敍灞炬箒闂団偓鐟曚胶娈戦惇瀣箖閺夛拷
相关话题/国际 电子 经济 语言 香港中文大学

閹存劒璐熺拠鍙ュ敩鐞涱煉绱濋崚鍡曢煩鐠囧墽鈻肩挧鍕灐闁剧偓甯寸亸杈厴閼惧嘲褰�40%閹绘劖鍨氱挧姘舵尪閿涳拷
閹恒劌绠嶇挧姘舵尪閺夊啰娉妴鍌濐嚦娴狅綀銆冮崣顖炩偓姘崇箖娴滄帟浠堢純鎴犵搼闁柨绶炴稉鐑樻拱缁旀瑦甯归獮鍨吅娴肩姭鈧钒IP娴兼艾鎲抽垾婵撶礉閻€劍鍩涢柅姘崇箖鐠囧彞鍞悰銊ф畱閸掑棔闊╅柧鐐复閹存牗鎹i幎銉ㄥ枠娑旀澘鎮楅敍宀冾嚦娴狅綀銆冮懢宄板絿40%閹绘劖鍨氶妴鍌濐嚦娴狅綀銆冪拹顓濇嫳閺堫剛鐝禒璁崇秿娴溠冩惂閿涘苯娼庢禍顐㈠綀9閹舵ǜ鈧倸鐨㈤崚鍡曢煩闁剧偓甯撮妴浣规崳閹躲儱娴橀悧鍥╃搼閿涘苯褰傞崚鏉款劅閺嵚ゎ啈閸ф稏鈧胶娅ㄦ惔锕佸垱閸氀佲偓浣镐簳閸楁哎鈧礁浜曟穱掳鈧傅Q缁屾椽妫块妴浣虹叀娑斿簺鈧浇鐪撮悺锝囩搼閸氬嫬銇囬獮鍐插酱閵嗭拷