删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Estimation of Sparse Structural Parameters with Many Endogenous Variables (2016)_香港中文大学

香港中文大学 辅仁网/2017-07-06

Estimation of Sparse Structural Parameters with Many Endogenous Variables
Publication in refereed journal


香港中文大学研究人员 ( 现职)
史震涛教授 (经济学系)


全文


引用次数
Web of Sciencehttp://aims.cuhk.edu.hk/converis/portal/Publication/1WOS source URL
Scopushttp://aims.cuhk.edu.hk/converis/portal/Publication/1Scopus source URL

其它资讯

摘要We apply the generalized method of moments–least absolute shinkage and selection operator (GMM-Lasso) (Caner, 2009) to a linear structural model with many endogenous regressors. If the true parameter is sufficiently sparse, we can establish a new oracle inequality, which implies that GMM-Lasso performs almost as well as if we knew a priori the identities of the relevant variables. Sparsity, meaning that most of the true coefficients are too small to matter, naturally arises in econometric applications where the model can be derived from economic theory. In addition, we propose to use a modified version of AIC or BIC to select the tuning parameter in practical implementation. Simulations provide supportive evidence concerning the finite sample properties of the GMM-Lasso.

着者Shi Z.
期刊名称Econometric Reviews
出版年份20http://aims.cuhk.edu.hk/converis/portal/Publication/16
月份http://aims.cuhk.edu.hk/converis/portal/Publication/1http://aims.cuhk.edu.hk/converis/portal/Publication/1
日期25
卷号35
期次8-http://aims.cuhk.edu.hk/converis/portal/Publication/10
出版社Marcel Dekker Inc.
出版地United States
页次http://aims.cuhk.edu.hk/converis/portal/Publication/1582 - http://aims.cuhk.edu.hk/converis/portal/Publication/1608
国际标準期刊号0747-4938
语言英式英语

关键词Big data, Endogeneity, GMM, High-dimensional, Sparsity

相关话题/经济 国际 语言 香港中文大学 英语